
Textpattern Solutions:
PHP-Based Content

Management Made Easy

Kevin Potts, Robert Sable, and Nathan Smith
with Mary Fredborg and Cody Lindley

8326FM.qxd 4/23/07 2:23 PM Page i

Textpattern Solutions: PHP-Based Content
Management Made Easy

Copyright © 2007 by Kevin Potts, Robert Sable, Nathan Smith, Mary Fredborg, Cody Lindley

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-832-0

ISBN-10 (pbk): 1-59059-832-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com
in the Downloads section.

Credits

Lead Editors
Chris Mills, Matthew Moodie

Technical Reviewer
Mary Fredborg

Editorial Board
Steve Anglin, Ewan Buckingham,

Gary Cornell, Jason Gilmore,
Jonathan Gennick, Jonathan Hassell,

James Huddleston, Chris Mills,
Matthew Moodie, Jeff Pepper,

Dominic Shakeshaft, Matt Wade

Project Manager
Richard Dal Porto

Copy Edit Manager
Nicole Flores

Copy Editor
Nancy Sixsmith

Assistant Production Director
Kari Brooks-Copony

Production Editor
Ellie Fountain

Compositors
Dina Quan and Darryl Keck

Artist
April Milne

Proofreaders
Paulette McGee and Elizabeth Berry

Indexer
Julie Grady

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

8326FM.qxd 4/23/07 2:23 PM Page ii

This book is dedicated to my beautiful wife and children, who have often wondered why
the heck writing a book takes so darn long. They have offered nothing but the kindest
support and blessed respite, and despite my agonizing over formatting inconsistencies

and code accuracy, were there at the end of the day to remind me of the most
important things in my life. To my children: I’m sorry the plot and characters do not

make for engaging bedtime reading. (I tried to work in some fire trucks and princesses,
but the editors said it “wasn’t relevant.”) To my wife: you could not have been a more

patient, loving partner. I love you all very much.

Kevin Potts

I would like to dedicate this book to my beautiful wife, Joci. I never imagined that I
would meet someone so caring and supportive to spend my life with. Thank you, Joci,

for everything that you are and everything that you make me. I love you.

Rob Sable

I would like to dedicate this book to my wife, who has stood by me throughout my
meandering pursuit of job satisfaction and outlets for creativity. Thank you for

listening to my ranting about funky code acronyms and encouraging me even when I
cannot seem to make sense of it all. I love you more than words can express.

You are the world to me.

Nathan Smith

8326FM.qxd 4/23/07 2:23 PM Page iii

CONTENTS AT A GLANCE

Foreword . xvii

About the Authors . xxii

Acknowledgments. xxiv

Introduction . xxv

PART ONE: GETTING STARTED

Chapter 1: Setting the Stage . 1

Chapter 2: Installing Textpattern . 19

PART TWO: THE TEXTPATTERN INTERFACE

Chapter 3: Site Administration . 67

Chapter 4: Basic Content Manipulation . 95

Chapter 5: Presentation. 123

PART THREE: CUSTOMIZING TEXTPATTERN

Chapter 6: The Textpattern Model . 151

Chapter 7: Creating the Content: Categories and Articles 161

Chapter 8: Customizing the Presentation: Sections,
Pages, Forms, and Style . 181

8326FM.qxd 4/23/07 2:23 PM Page iv

Chapter 9: Tying Content and Structure Together. 207

Chapter 10: Comments . 229

Chapter 11: Beyond the Basics . 245

PART FOUR: EXTENDING TEXTPATTERN

Chapter 12: Custom Fields. 265

Chapter 13: Using Plugins . 277

Chapter 14: Writing Plugins . 287

PART FIVE: TEXTPATTERN SITE EXAMPLES

Chapter 15: Multiauthor Weblog . 313

Chapter 16: Case Study: PopularWeddingFavors.com 337

Chapter 17: Case Study: BoiseCityEats.com 359

PART SIX: APPENDIXES

Appendix A: Tag Reference . 393

Appendix B: Plugin Developer Resources 473

Index . 491

8326FM.qxd 4/23/07 2:23 PM Page v

8326FM.qxd 4/23/07 2:23 PM Page vi

CONTENTS

Foreword . xvii

About the Authors . xxii

Acknowledgments. xxiv

Introduction . xxv

PART ONE: GETTING STARTED

Chapter 1: Setting the Stage . 1

What is Textpattern? . 2
A noble history . 4
How does Textpattern work?. 6

LAMP platform . 6
Licensing. 7
Practically speaking. 8

An active community . 9
Textpattern FAQs . 9
Textpattern forum. 10
Textpattern resources. 11
TextBook International . 12
TXP Magazine . 12
Textgarden . 14
Textplates . 15
Key bloggers . 16

Summary . 17

8326FM.qxd 4/23/07 2:23 PM Page vii

Chapter 2: Installing Textpattern . 19

System requirements . 20
Clean URL support . 20

What are clean URLs? . 21
Checking for clean URL support. 21

Choosing a host . 22
Which version of Textpattern? . 22
Acquiring Textpattern . 23

Downloading an official release . 23
Local development on Windows . 24

Installing XAMPP . 24
Using XAMPP . 27
MySQL setup . 28
Initial preparations . 30
Installing Textpattern . 34

Local development on Mac OS X . 36
Installing MAMP . 37

Creating a MySQL database . 41
Installing Textpattern . 43

Hosted environment setup . 47
Database setup . 48
FTP files to host . 48

Install process . 48
Installing Textpattern . 49
Checking site preferences . 52
Checking site diagnostics . 54

Preflight checks . 55
Messy URLs for testing . 56

Advanced topics . 57
Textpattern development site . 57
Pulling code from Subversion . 60

On a PC . 60
Subversion on OS X . 62

Installing Subversion . 62
Installing svnX . 62

Summary . 64

PART TWO: THE TEXTPATTERN INTERFACE

Chapter 3: Site Administration . 67

Logging in . 68
Pre-flight check . 68
Preferences. 70

Publish . 71
Comments . 75

CONTENTS

viii

8326FM.qxd 4/23/07 2:23 PM Page viii

Advanced Preferences. 77
Admin . 78
Comments . 79
Style . 80
Custom fields . 80
Links . 82
Publish . 82

Manage languages . 85
Users . 86
Visitor Logs . 88
Plugins . 89
Import . 91
Summary . 93

Chapter 4: Basic Content Manipulation . 95

Write . 96
Textile Help . 97

Basic Textile . 98
Advanced Textile . 103

Advanced Options . 110
Article/Excerpt Markup . 110
Keywords. 110
Article image. 111
URL-only title . 111

Recent Articles . 111
Categories. 111
Articles . 112
Images . 113
Files . 115
Links . 117
Comments . 119
Summary . 120

Chapter 5: Presentation. 123

Overview . 124
Pages . 126

Tag Builder . 127
Article Output . 128
Article Navigation . 131
Site Navigation. 131
XML Feeds . 133
Miscellaneous . 134
File downloads. 136

All Pages . 136

CONTENTS

ix

8326FM.qxd 4/23/07 2:23 PM Page ix

Sections . 136
Forms . 137

Tag Builder . 138
Articles . 138
Links . 140
Comments . 141
Comment Details . 141
Comment form . 142
Search results . 143
File downloads. 143

Style . 144
Raw CSS. 146
CSS editor . 147

Summary . 148

PART THREE: CUSTOMIZING TEXTPATTERN

Chapter 6: The Textpattern Model . 151

The semantic ideal . 152
Data about data, page hierarchy, and layers . 152
The fourth dimension . 153

What’s the point? . 154
The Textpattern semantic model . 154

The building blocks . 155
Categories . 155
Articles . 156
Sections . 156
Pages . 156
Forms. 156

The tag language. 157
Knowledge portability . 157

The testing ground: Buzzbomb . 157
Summary . 159

Chapter 7: Creating the Content: Categories and Articles 161

Categories. 162
Creating a category . 162
Categories vs. sections. 163
Multiple categories vs. tagging . 164
Nesting . 164
Category names vs. titles . 165
Categories in URLs . 165

Option 1: Database query string . 166
Option 2: The painfully obvious URL . 166

CONTENTS

x

8326FM.qxd 4/23/07 2:23 PM Page x

Articles . 166
Article title . 167

Customizing the URL . 167
Body and Excerpt . 168
Status . 169

Draft, Pending, and Live . 169
Hidden . 170
Sticky . 170

Sections and categories . 171
Keywords . 172

Images, Files, and Links . 173
Images . 173

Textile . 176
Textpattern. 176
XHTML . 176

Files . 176
Links. 178

Summary . 179

Chapter 8: Customizing the Presentation: Sections,
Pages, Forms, and Style . 181

Build the HTML and CSS first . 183
Create your sections . 184

Creating a new section . 186
Filling in the options . 187
Choices, choices . 188

Creating templates with pages . 188
The big copy and paste . 189
Forms . 191

Breaking it down . 191
Article forms . 192
Comment forms . 192
Link forms . 193
File forms . 193
Misc forms . 193

Dismantling the prototype . 193
Creating forms containing static content . 195
Creating forms that contain dynamic article content 197

Section-sensitive article output . 197
Multiple templates within a single page. 199
Section-independent article output . 202

Summary . 205

CONTENTS

xi

8326FM.qxd 4/23/07 2:23 PM Page xi

Chapter 9: Tying Content and Structure Together. 207

Building static pages . 208
Laying the static page’s foundation . 208
Creating the static page content . 209
Creating the template for the static page . 209

Creating an archive page . 211
Creating the section and page . 212
Editing the archive template . 212

Placing sticky content . 213
Adding the most recent article. 214
Adding a list of all past articles . 215

Creating a contact page . 218
Section and page wonder duo . 218
Adding some introductory copy . 218
Adding the contact form . 219

Using a raw PHP-driven solution . 220
Using Textpattern plugins. 220

Creating a basic photo gallery . 222
Section and page (again) . 223
Adding introductory copy (again) . 223
Creating the photo gallery . 224

TXP tags vs. plugins . 224
Using rss_thumbpop for the photo gallery . 224

Summary . 227

Chapter 10: Comments . 229

Activating comments. 230
Global off switch . 230

Comment expiration . 231
Article-level control . 232

Comments and articles . 232
Comments forms . 233

Comments . 233
Comment_Form. 234
Popup_Comments . 235

Adding comment functionality to articles . 236
Important preference settings . 236
Adding comments directly to the <txp:article /> tag 236
Rendering comments from their own <txp:article /> tag 238

Comment administration . 239
Comment moderation. 240
Combating comment spam . 241

Summary . 242

CONTENTS

xii

8326FM.qxd 4/23/07 2:23 PM Page xii

Chapter 11: Beyond the Basics . 245

Creating error pages . 246
Building a default error page . 247
Customizing error pages . 249

Option 1: Creating individual error pages. 250
Option 2: Using conditional tags on a single error page. 251

Adding search functionality and customizing search results 252
Adding the search box . 253
Customizing search results . 253

Customizing metadata information. 256
Splitting up the forms . 257

Moving the static metadata . 258
Going dynamic. 258

Bringing the metadata to the people . 260
Section landing pages and sticky articles . 261
Metadata for the home page. 261

Summary . 263

PART FOUR: EXTENDING TEXTPATTERN

Chapter 12: Custom Fields. 265

What are custom fields? . 266
Setting custom field names . 266
Setting values in custom fields . 267
Custom field tags. 268

Using the <txp:custom_field /> tag . 268
Using the <txp:if_custom_field /> tag. 270
Extending the discography example . 271

Ordering articles by custom fields . 273
Plugins and custom fields . 275

rss_admin_show_adv_opts. 275
sed_pcf . 275

Summary . 275

Chapter 13: Using Plugins . 277

What is a plugin? . 278
Public-side vs. admin-side plugins . 278
Finding plugins . 279
Installing plugins . 280
Activating plugins . 282
Viewing plugin help . 283
Viewing and editing plugin code . 283
Uninstalling plugins . 285
Plugins tab . 285
Summary . 285

CONTENTS

xiii

8326FM.qxd 4/23/07 2:23 PM Page xiii

Chapter 14: Writing Plugins . 287

Before you start . 288
Getting started . 288

Textpattern plugin template . 289
Local workspace setup . 289
Local Textpattern setup . 289

Plugin loading . 291
Basic plugin topics . 292

Textpattern plugin template explained . 292
Writing a basic plugin . 293

Plugins as tags . 295
Self-closing vs. enclosing plugin tags . 295
Plugin attributes . 295
Plugin output . 296

Testing the first basic plugin . 296
Calling the plugin with attributes . 298
Calling the plugin with incorrect attributes . 298
Plugin errors . 299
Debugging . 300

Compiling and releasing the plugin . 300
New plugin installed in Textpattern . 302

Viewing plugin help . 302
A basic enclosing plugin. 303

Advanced plugin topics . 304
Conditional tags . 304
Callback functions . 305

Public-side callback events . 305
Admin-side callback events. 306
Admin-side tab registration . 307

Helper functions and global variables . 309
Real-world examples . 309

rss_unlimited_categories . 309
rss_thumbpop . 310
rss_auto_excerpt . 310
rss_admin_db_manager . 310
glx_admin_image . 310
ajw_if_comment_owner . 310
zem_contact_reborn . 310

Summary . 311

PART FIVE: TEXTPATTERN SITE EXAMPLES

Chapter 15: Multiauthor Weblog . 313

Pages . 315
static . 315
default . 316

CONTENTS

xiv

8326FM.qxd 4/23/07 2:23 PM Page xiv

featured. 317
archive . 318
search . 320
error_404. 321

Forms . 322
comments (type: comment) . 322
comments_display (type: article). 323
comment_form (type: comment) . 323
comments_preview (type: comment) . 324
default (type: article) . 324
doctype (type: misc) . 325

PHP date() . 326
External CSS . 327
OpenSearch . 327
Google Analytics. 328

excerpt (type: article) . 329
featured_article (type: article) . 329
featured_gallery (type: article) . 330
featured_preview (type: article) . 330
headlines (type: article) . 330
search_results (type: article) . 331
single (type: article) . 331
Links (type: link) . 331
sidebar_left (type: misc) . 331
sidebar_right (type: misc) . 332
zem_contact_form (type: misc) . 334
zem_contact_thanks (type: misc) . 335

Summary . 335

Chapter 16: Case Study: PopularWeddingFavors.com 337

Why use Textpattern for ecommerce? . 338
Building PopularWeddingFavors.com. 339

Site structure . 341
Page structure . 341

Page header and footer. 342
Home page. 342
Static pages . 346
Catalog page . 346
Cart and checkout pages . 352
Order confirmation page . 353
Error page . 354

Plugins used . 355
Summary . 356

CONTENTS

xv

8326FM.qxd 4/23/07 2:23 PM Page xv

Chapter 17: Case Study: BoiseCityEats.com 359

What is BoiseCityEats.com? . 360
Why look at BoiseCityEats.com? . 362
CityEats.com on textpatternsolutions.com . 364
Preparing TXP for CityEats.com. 364

Setting Site Preferences. 364
Setting Advanced Preferences . 365
Adding the right plugins . 366

Building a foundation with sections, categories, and content 367
Removing default settings, and adding one section 367
Creating categories . 368
Entering content. 368

Preparing the presentation . 372
Adding new styles and removing the default styles 372
Adding a new page and removing default pages. 376
Removing default forms and adding new forms 377

Building the presentation using Pages and Forms . 377
Creating the home page and error page . 377
Creating the article list and individual article . 383

Summary . 390

PART SIX: APPENDIXES

Appendix A: Tag Reference . 393

<txp:tag_name /> . 394
<txp:article /> . 394
<txp:article_custom /> . 397
<txp:article_id /> . 399
<txp:article_image /> . 400
<txp:author /> . 400
<txp:body /> . 401
<txp:breadcrumb /> . 401
<txp:category /> . 402
<txp:category_list /> . 404
<txp:category1 /> . 405
<txp:category2 /> . 406
<txp:comment_anchor /> . 407
<txp:comment_email /> . 407
<txp:comment_email_input /> . 407
<txp:comment_id /> . 408
<txp:comment_message /> . 408
<txp:comment_message_input /> . 408
<txp:comment_name /> . 408
<txp:comment_name_input /> . 409
<txp:comment_permlink> . 409
<txp:comment_preview /> . 410

CONTENTS

xvi

8326FM.qxd 4/23/07 2:23 PM Page xvi

<txp:comment_remember /> . 410
<txp:comment_submit /> . 410
<txp:comment_time /> . 411
<txp:comment_web /> . 411
<txp:comment_web_input /> . 411
<txp:comments /> . 412
<txp:comments_count /> . 413
<txp:comments_error /> . 413
<txp:comments_form /> . 413
<txp:comments_help /> . 414
<txp:comments_invite /> . 415
<txp:comments_preview /> . 416
<txp:custom_field /> . 416
<txp:css /> . 417
<txp:else /> . 418
<txp:email /> . 418
<txp:error_message /> . 419
<txp:error_status /> . 419
<txp:excerpt /> . 419
<txp:feed_link /> . 419
<txp:file_download /> . 421
<txp:file_download_category /> . 421
<txp:file_download_created /> . 422
<txp:file_download_description /> . 422
<txp:file_download_downloads /> . 423
<txp:file_download_id /> . 423
<txp:file_download_link> . 423
<txp:file_download_list /> . 424
<txp:file_download_modified /> . 425
<txp:file_download_name /> . 426
<txp:file_download_size /> . 426
<txp:if_article_author> . 426
<txp:if_article_category> . 427
<txp:if_article_id> . 427
<txp:if_article_list> . 428
<txp:if_article_section> . 428
<txp:if_author> . 429
<txp:if_category> . 429
<txp:if_comments> . 429
<txp:if_comments_allowed> . 430
<txp:if_comments_disallowed> . 430
<txp:if_comments_error> . 431
<txp:if_comments_preview> . 431
<txp:if_custom_field> . 431
<txp:if_different> . 432
<txp:if_excerpt> . 432
<txp:if_first_article> . 432
<txp:if_individual_article> . 433
<txp:if_last_article> . 433

CONTENTS

xvii

8326FM.qxd 4/23/07 2:23 PM Page xvii

<txp:if_plugin> . 433
<txp:if_search> . 434
<txp:if_section> . 434
<txp:if_status> . 434
<txp:image /> . 435
<txp:image_display /> . 436
<txp:image_index /> . 436
<txp:keywords /> . 437
<txp:lang /> . 437
<txp:link /> . 437
<txp:link_category /> . 438
<txp:link_date /> . 438
<txp:link_description /> . 439
<txp:link_feed_link /> . 439
<txp:link_name /> . 440
<txp:link_to_home> . 441
<txp:link_to_next> . 441
<txp:link_to_prev> . 442
<txp:link_url /> . 442
<txp:linkdesctitle /> . 442
<txp:linklist /> . 443
<txp:meta_keywords /> . 444
<txp:meta_author /> . 444
<txp:newer> . 444
<txp:next_title /> . 445
<txp:older> . 445
<txp:output_form /> . 446
<txp:page_title /> . 446
<txp:page_url /> . 447
<txp:password_protect /> . 447
<txp:permlink> . 448
<txp:php> . 448
<txp:popup /> . 449
<txp:posted /> . 450
<txp:prev_title /> . 450
<txp:recent_articles /> . 450
<txp:recent_comments /> . 452
<txp:related_articles /> . 453
<txp:search_input /> . 454
<txp:search_result_count /> . 455
<txp:search_result_date /> . 455
<txp:search_result_excerpt /> . 456
<txp:search_result_title /> . 456
<txp:search_result_url /> . 456
<txp:section /> . 457
<txp:section_list /> . 457
<txp:sitename /> . 459
<txp:site_slogan /> . 459
<txp:site_url /> . 459

CONTENTS

xviii

8326FM.qxd 4/23/07 2:23 PM Page xviii

<txp:text /> . 460
<txp:thumbnail /> . 460
<txp:title /> . 461
<txp:txp_die /> . 461
Common tag attributes . 462
Common date format values . 464
Common HTTP status codes . 465
Index . 466

Appendix B: Plugin Developer Resources 473

Helper functions . 474
Global variables. 476

Index . 491

CONTENTS

xix

8326FM.qxd 4/23/07 2:23 PM Page xix

8326FM.qxd 4/23/07 2:23 PM Page xx

FOREWORD

When I first discovered Textpattern in 2004, I was looking for a flexible CMS that could not
only power my blog but also power my whole site, especially the portfolio. I fell in love with
the Textpattern XML style template tags, clean administration interface, and sheer speed and
flexibility. I keep trying other alternatives, but always come back to Textpattern. To my mind,
no other system can compete with its flexibility and the strength of its community.

I use it not only to power my site (www.hicksdesign.co.uk) and side projects such as Pimp
My Camino (http://pimpmycamino.com), but also to power sites for my clients, including The
Forgiveness Project (www.theforgivenessproject.com) and Open Doors (http://student.
opendoorsuk.org). Even the most technophobic clients enjoy using Textpattern’s un-
intimidating administration panel to update their sites. Designers love it because they can
easily set up and manage sites by themselves, inputting any content and displaying it where
they want, the way they want. Everyone wins.

However, one thing that Textpattern has always lacked is a printed manual—a physical guide
and reference work that also demonstrates how it can be used for everything from personal
blogs to ecommerce sites. Fortunately, Kevin Potts, Robert Sable, Nathan Smith, Mary
Fredborg, and Cody Lindley have more than filled that need, and you now hold the result!
Textpattern Solutions: PHP-Based Content Management Made Easy is an excellent guide, tak-
ing you from installation, to advanced uses of Textpattern with global variables, to writing
your own plugins. There is something here for all levels of users and would-be users to glean
and enjoy. It’s already a permanent feature of my desk!

Jon Hicks, Hicksdesign

8326FM.qxd 4/23/07 2:23 PM Page xxi

ABOUT THE AUTHORS

Kevin Potts has been working on the Web since the mid-1990s, having started his career
designing his first employer’s website with Netscape and Notepad. He has spent the bulk of
his design career working as a print designer and web developer, and is now the creative
director of a large Midwestern software company. Coupled with years of freelancing and
agency work, Kevin has created dozens of websites for businesses of all sizes in an array of
industries. He started using Textpattern in 2004 as a blogging tool for graphicpush.com,
where he still writes about the business of design and life as a creative team manager.

Nathan Smith is a goofy guy who enjoys practicing and preaching web standards. While
attending Asbury Theological Seminary, he initially picked up Textpattern to build a website
that could be easily updated by the staff at his church, and that led to a full-time career in
web development. Nathan works as an Information Architect/Interface Designer at Geniant
and writes semiregularly at sonspring.com and godbit.com. He has been described by family
and friends as mildly amusing, but he is really quite dull.

Robert Sable has more than ten years of experience designing and developing web-based
applications for small businesses up to Fortune 50 companies. Rob recognized the power and
flexibility of Textpattern from its early gamma releases. He has published more than 20
Textpattern plugins and numerous tutorials on his website at www.wilshireone.com. Rob also
provides custom software development services using Textpattern as a development frame-
work. He lives with his wife, Joci, in Copley, Ohio, which is located between Akron and
Cleveland. Rob and Joci love to travel together and continue to find new and exciting places
to visit. Rob was born and raised in the Cleveland area and continues to be a painfully dedi-
cated Cleveland sports fan.

Mary Fredborg is a member of the Textpattern development team (http://team.
textpattern.com). For more than ten years she’s been involved in various aspects of web
development and remains keenly interested in learning new methods and technologies, as
well as refining her existing knowledge and skills. These days you can often find Mary work-
ing on Textpattern itself, creating new plugins for it and providing technical support for users
of varying levels of experience. She lives in Alberta, Canada with her amusingly crazy dog,
who also happens to think the same of Mary.

8326FM.qxd 4/23/07 2:23 PM Page xxii

Cody Lindley is a Senior Software Engineer for SuperValu, working out of Boise, Idaho.
When he is not working with client-side technologies, Flash, or interaction design, he
spends time with his wife and son, enjoying a simple lifestyle in the Northwest. Cody has a
passion for Christian theology and takes great pleasure in learning and studying God’s
word. His work and ongoing ramblings can be found at codylindley.com.

ABOUT THE AUTHORS

xxiii

8326FM.qxd 4/23/07 2:23 PM Page xxiii

ACKNOWLEDGMENTS

We want to acknowledge the innumerable hours of thankless work that goes into making
Textpattern such a great system. The core developers have built an open-source solution that
rivals many of the retail options out there, and their altruism has made possible the book
you are now reading. If not for the efforts of these people, there would be no Textpattern:
Dean Allen, Mary Fredborg, Pedro Palazón, Alex Shiels, and Sencer Yurdagül. We the authors
tip our hats to you, and collectively look forward to where Textpattern is heading in the
future.

We also want to acknowledge the dedicated editors of this book for their patience in dealing
with us as inexperienced authors. friends of ED/Apress has been a great company to write
for. Special thanks to the foED/Apress crew: Chris Mills, Richard Dal Porto, Matthew Moodie,
Ellie Fountain, and Nancy Sixsmith. Last but not least, an incredible debt of gratitude is owed
to our technical reviewer, Mary Fredborg, who has provided us with the guidance and expert
input that only a core Textpattern developer can provide.

Cody, Kevin, Rob, and Nathan

8326FM.qxd 4/23/07 2:23 PM Page xxiv

INTRODUCTION

Salutations, brave reader, and welcome to Textpattern Solutions: PHP-Based Content
Management Made Easy. Since you have this book in hand, it is a safe assumption that you
are interested in the content-management system (CMS) called Textpattern. Perhaps you
have heard about how its tag syntax resembles XHTML or the ease with which you can build
custom templates. Maybe you are looking to switch from some other proprietary platform
with restrictive licensing or just want an intuitive online text editor to use for writing and dis-
playing a journal or blog. Whatever the motivation, it is our sincere desire that this book
serve you well as both reference and tutorial, guiding you along the path to streamlined
website development and maintenance with Textpattern.

Learning something new can often be a daunting task, especially when you endeavor to
accomplish it alone. Hopefully this text will find a ready place on your shelf or desktop, pro-
viding simple solutions to otherwise seemingly complicated or obscure situations. Each one
of this book’s authors has traversed the meandering road of open-source content manage-
ment, arriving at Textpattern as a powerful tool to assist in rapid site development. The book
you are now reading is one that we wanted to have when we first learned to use this system.
It is the result of a labor of love for a methodology that has made our lives easier. We hope
that our combined knowledge will benefit you by saving the time and frustration of scouring
the Internet for tips and tutorials, putting all that information at your fingertips.

Book structure
This book is divided into 17 chapters and 2 appendixes. It is obviously not a mystery novel,
so feel free to skip around without fear of ruining some gripping plot (the butler did it). In
fact, by the time you are done reading, Textpattern will probably be so familiar to you that
none of it should seem esoteric. The chapters can be read straight through sequentially to
learn things step by step, or the book can be used more as an encyclopedia to look up spe-
cific information once you have a handle on the basics.

Chapter 1 is pretty straightforward and covers the background and community behind
Textpattern. Some of the more notable Textpattern sites are mentioned to give you some
inspiration as you conjure up ideas for your own project. Also, the GPL and MIT licensing

8326FM.qxd 4/23/07 2:23 PM Page xxv

models are compared and explained, which is good for those who like to use software
knowing that it truly is open source and free of restrictions or fees. After all, everybody
loves free stuff, right?

Chapter 2 shows you how to create a local testing environment by installing Textpattern
on your own computer running Windows or Mac OS X. Since the components that power
Textpattern are all freely available, they have been made to run on just about any operat-
ing system. No matter which type of setup you prefer, we’ve got you covered. Simply flip
to the set of instructions that pertain to you and follow along accordingly.

Chapter 3 pertains to the admin section, in which you can check site diagnostics, create
and manage user accounts, and check visitor logs. You can also edit a number of prefer-
ences, such as changing the site’s time zone or tweaking the way your site is syndicated to
external sources. This is also where you’ll go to install extra third-party plugins, which then
enable you to use Textpattern in new and inventive ways. If you want to migrate from
another publishing platform, such as Blogger or Movable Type, there is even an import
function that converts those older posts to a usable Textpattern format.

Chapter 4 covers the content section of Textpattern. Here you are introduced to the text
formatting syntax called Textile, and you can begin to write basic articles. You’ll learn how
to arrange your site into sections and categories, as well as incorporate images and file
uploads into your content. The chapter also covers how to use the links area for times
when you want to call attention to something on the Web but are too lazy to write an arti-
cle about it.

Chapter 5 is all about presentation, which actually happens to be much more than just
looking good. You’ll dig into making different site sections, associating them with page
templates, and controlling their appearance using the Cascading Style Sheets (CSS) style
editor. Some basics of the CSS visual presentation language are covered, as well as a few
caveats to consider when coding your layout. You’ll also look at TXP forms and see how
they can make life a lot easier by reusing chunks of code throughout a site.

Chapter 6 dives into the world of semantics, and you’ll learn the importance of properly
marking up a document based on its meaning. We’ll discuss the multiple layers of web
development—including the content, structure, presentation, and behavioral layers—and
how those four work together within the Textpattern system. You’ll understand why
Textpattern is explicit in its separation of content and structure, and how those two
aspects are eventually woven together.

Chapter 7 explains how categories and articles work together as the primary axis for the
Content tab, and how they can be used to organize your articles in associative ways. For
instance, an article about a vacation to Europe could be categorized in both vacation and
Europe. This way, other vacations could be grouped within the vacation category, and a dif-
ferent article about a business trip to Europe could be grouped in that category while not
necessarily having anything to do with a vacation. You’ll navigate the finer points of both
pieces of the TXP puzzle, including URL structure, different status levels, and the power of
keywords; and you’ll tackle the management of other content: links, images, and files.

Chapter 8 explores the Presentation tab in depth. You’ll learn about the symbiotic relation-
ship between sections, pages, and forms, and how they work together with your site’s

INTRODUCTION

xxvi

8326FM.qxd 4/23/07 2:23 PM Page xxvi

content. Using a band’s website as an example, we’ll break down how to develop a tem-
plate step by step, from moving a raw HTML file into the Textpattern system, to outsourc-
ing pieces of code into different forms, to editing those forms with Textpattern tags for
pulling in dynamic content. In addition, we’ll discuss the fundamentals of pages and sec-
tions, the options available for each, and how they work together to produce full tem-
plates for housing content. At the end of the chapter, you’ll know how an entire home
page is constructed in Textpattern.

Chapter 9 takes the concepts from Chapter 8 and applies them to several real-world exam-
ples. We’ll discuss further the relationship between articles, sections, pages, and forms;
and how they work in tandem to produce web pages. You’ll learn about building a page of
static content, an archive page for blog posts, a contact page, and a photo gallery. By the
end of this chapter, you’ll see how the core building blocks of Textpattern produce differ-
ent types of content while using the same basic principles.

Chapter 10 addresses comments, some of the trickier parts of any Textpattern site. They
tend to be more difficult to control than other parts of a site, but you’ll learn about the
numerous options and tags (as well as a virtual library of plugins) that Textpattern provides
to customize them on a very granular level. Additionally, you’ll get the hang of managing
comments for those occasions in which pesky visitors might leave feedback that is less
than welcome: whiners, spammers, and trolls—oh my.

Chapter 11 gets into more advanced territory. Starting with a few fundamental reminders,
you’ll learn two different ways to create customized error messages, methods for building
a search box and customized search results, and finally adding dynamic metadata to all
pages of your site. You’ll explore some more esoteric functionality, including custom fields,
keywords, more conditional statements, and several specialized tags.

Chapter 12 revisits how to make use of custom fields. Since custom fields can be whatever
you want, they enable you to tailor the way things work. You can use them to build extra
conditional logic into pages. You’ll also learn how to use custom fields to sort articles
according to criteria that you create, instead of just by date or category. You’ll also look at
using plugins to enable unlimited custom fields instead of the default number of ten. This
unlocks much more potential, such as tagging, which has become quite popular on many
social networking sites, enabling users to help categorize content.

Chapter 13 looks at several of the more popular and powerful Textpattern plugins. One
plugin enables you to easily create an email contact form, while others can help you style
the look of article comments. There is even one that enables advanced users to run SQL
queries directly against the MySQL database or do an easy one-click backup of an entire
site. Needless to say, this chapter will really broaden your horizons as to how extensible
Textpattern can be.

Chapter 14 tests your PHP knowledge by showing you how to write a plugin. You’ll explore
the scenarios in which you might need to write your own plugins: if the basic Textpattern
capabilities cannot handle a particular need and if others have not already addressed it
with plugins of their own. The plugin architecture is explained, and you’ll get a feel for the
steps necessary to take an idea and make it a reusable chunk of code that others can ben-
efit from.

INTRODUCTION

xxvii

8326FM.qxd 4/23/07 2:23 PM Page xxvii

Chapter 15 covers a multiauthor website. We’ll show you how to create different tiers of
users, with varying levels of privileges. This is useful when you want authors to be able to
contribute to a site, while not necessarily letting them have authority over its entirety.

Chapter 16 shows how to use a few of the plugins covered earlier to create an ecommerce
website. You’ll learn about the benefits of using Textpattern to create ecommerce sites
and how to use sections, categories, and articles to create an online catalog. We’ll also
show you how custom coded components can be incorporated into your site to offer
shopping cart functions and payment system integration.

Chapter 17 describes case studies of a real live site: a start-to-finish walkthrough of the
steps involved in creating a restaurant review site for a large city. By the end of this chap-
ter, you’ll have a solid understanding of how to go beyond what Textpattern offers, writing
your own code to integrate directly into the system.

Appendix A is a tag reference with brief examples of how each Textpattern tag can be
used. Appendix B is an extended list of commonly used helper functions and global vari-
ables from the Textpattern source that plugin authors can use when writing plugins.

Necessities
To follow along with the localized examples in this book, you need a computer with an
Internet connection running Windows or Mac OS X. You might also want a graphics pro-
gram of some sort. We prefer either Adobe Photoshop or Fireworks, but other free alter-
natives, such as GIMP (www.gimp.org) work just fine. Designers tend to be fussy about
their preferred imaging software, and we certainly aren’t looking to pick any fights. Our
examples might vary, but we encourage you to use that with which you are familiar.

The rest of the components for this book can be downloaded and configured as needed
(for example, Apache, PHP, and MySQL). To get a live site running, you need at least a
shared web hosting service, of course. Because of the myriad of hosting companies and
their varying options, we cannot possibly cover every scenario. We do, however, walk you
through using some of the common configurations that are available by default for many
web hosting environments.

To make things easier, all the custom code examples covered in this book can be down-
loaded from the friends of ED website: http://friendsofed.com/. You can type every-
thing out manually if you feel so inclined, but to save time we recommend that you go to
the website and navigate to the corresponding code download for this book. You can also
check the publisher’s site for any errata that might pop up, on the off chance that we have
actually made any mistakes (hey, it could happen).

INTRODUCTION

xxviii

8326FM.qxd 4/23/07 2:23 PM Page xxviii

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions
are used throughout.

Important words or concepts are normally highlighted on the first appearance in bold
type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudocode and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ä Submenu ä Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow
like this: å.

This is a very, very long section of code that should be written all å

on the same line without a break.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxix

8326FM.qxd 4/23/07 2:23 PM Page xxix

PART ONE GETTING STARTED

8326CH01.qxd 4/4/07 7:23 PM Page xxx

1 SETTING THE STAGE

8326CH01.qxd 4/4/07 7:23 PM Page 1

When reading any good book, there is always an engrossing first chapter that grabs your
attention and beckons you to read more. While this book might not be of the suspenseful
thriller genre, hopefully it will whet your whistle and get you excited about the possibilities
of Textpattern (TXP). You will learn a bit about how it came to be and what the future
holds in store. You will also take a look at some of the highly trafficked TXP sites out there,
examining how each has chosen to implement the system.

What is Textpattern?
Ask any seasoned web developer about which tools to use for a job, and you will probably
hear the same response: “It depends.” Some designers swear by Photoshop; others prefer
Fireworks. Many people use the Windows operating system, though some might opt for
Linux or a Mac. Similar to many situations in life, the best way to find a solution is to first
define the problem. So, let’s evaluate whether Textpattern is right for you. The official site
defines Textpattern as “A free, flexible, elegant, easy-to-use content management system
[CMS] for all kinds of websites, even weblogs.”1

Catchy as it might sound, that bit of prose does not fully encapsulate the power of TXP.
Before you learn more about what TXP can do, let’s first identify what it is not. Think of it
as appraising a piece of property. Many systems are like prefabricated homes, in which you
can change only minor details. To do anything more requires quite a bit of remodeling.
Using TXP can be likened to finding a vacant lot with only a foundation (albeit a very good
one) and constructing the rest of house on your own. Depicted in Figure 1-1 is the default
look and feel for Textpattern as it appears without any extra customization. Looks can be
deceiving, though, for under this nondescript veneer is a powerful engine ready to be har-
nessed and directed.

Since Textpattern is quite diverse in what it can handle, a brief list of examples helps
demonstrate the scope of what can be done with it. It can be used to run a web-based
personal journal, referred to as a weblog (or blog for short). Of course, there are already
a variety of services out there, such as Blogger2 or LiveJournal,3 that enable someone to set
up a blog. However, Textpattern gives you the leeway to choose a host of your choice
instead of relying on a shared service. What also sets it apart from the crowd is the capa-
bility to manage more complex newspaper-style or multiauthor community sites.

One such site is UX Magazine, a prominent online publication focused on improving web-
based user experience (see Figure 1-2). Another is the Godbit Project,4 which is geared
toward helping churches make better use of the Web (this will be discussed in Chapter 16).

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

2

1. www.textpattern.com
2. www.blogger.com
3. www.livejournal.com
4. www.godbit.com

8326CH01.qxd 4/4/07 7:23 PM Page 2

Figure 1-1. Textpattern default

Figure 1-2. www.uxmag.com

SETTING THE STAGE

3

1

8326CH01.qxd 4/4/07 7:23 PM Page 3

Textpattern has even been used to power extremely high-traffic websites such as PvP
Online (see Figure 1-3), a web cartoon about video games that is also published in print by
Image Comics (best known for Spawn). The PvP site gets more than 15 million page views
per month.

Figure 1-3. www.pvponline.com

Needless to say, Textpattern is a highly versatile and very capable system. For people who
simply want a quick blog without much customization, a fully featured CMS can seem like
overkill. However, for those willing to put in a little extra effort, the flexibility of tailor-
fitting TXP to meet your exact specifications can be very rewarding. If you are up to it, pro-
ceed with confidence that by the time you finish this book you will be able to use TXP for
just about any web project imaginable.

A noble history
Textpattern is the brainchild of Dean Allen, who has described himself as the “world’s
slowest control freak.” He did so when referring to the delay between the initial concept
screenshots of Textpattern in July 2001 and the first stable release in August 2005. His
humorously self-deprecating assessment does not really do him justice. Dean can be
described instead as being both altruistic and an entrepreneurial businessman. He got his
start working in the printing business as a typographer, art director, and noted book
designer. From there, he became increasingly interested in the Web as a publishing plat-
form, which eventually led to the Textpattern CMS.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

4

8326CH01.qxd 4/4/07 7:23 PM Page 4

Dean has also built up quite a successful web hosting company named TextDrive.5 In
November 2005, TextDrive merged with the collaborative technology company called
Joyent6 and now has quite a bit of influence in the world of web development. TextDrive
hosts several high-profile websites, such as A List Apart,7 which is arguably the most pop-
ular publication on web design and development. It also contributes to other open-source
initiatives by enabling people it hosts to specify to which project they want a portion of
their money given. This does not mean any additional cost for the customer, but simply
gives back to those systems that TextDrive actively supports.

Ever since the inception of Textpattern, it has been made available to the public at no
charge. Because of this (and the consistent commitment to quality with which TXP devel-
opment has been approached), there has been a rapid uptake by designers and developers
using it. Many deploy TXP to run not only their own personal sites but also their clients’
projects. It has grown into a robust website management tool, powering everything from
simple blogs to online commerce, even being used to run the campaign website of Ted
Kennedy, the United States Senator from Massachusetts. Kennedy is quite technically savvy
for a politician and was the first-ever Senator to have a website (see Figure 1-4). Not only
does he support Net Neutrality, but he uses Textpattern and YouTube8 to get his message
across.

Figure 1-4. www.tedkennedy.com

SETTING THE STAGE

5

1

5. www.textdrive.com
6. www.joyent.com
7. www.alistapart.com
8. www.youtube.com

8326CH01.qxd 4/4/07 7:23 PM Page 5

While it is easy to see that Textpattern has already enjoyed quite a bit of popularity, the
best is yet to come, as the saying goes. Some exciting additions are planned for future
releases, as well as commercial support being carried out by the core development team.
There is also a Textpattern Pro version in development for customers who want features
beyond the basic setup.9 This means that we will continue to see more uses of TXP for
business and commercial purposes as it pushes forward beyond the role of a simple blog
engine into the arena of enterprise CMSs.

How does Textpattern work?
This section discusses what makes Textpattern tick, including the technology behind it and
how a Textpattern site works in terms of the architecture. We will also get into a bit of
legalese and figure out why there have been a few licensing changes, resulting in more
power being given to the end user and developers alike. Additionally, we will cover the
geeky details about how Textpattern works. Then we will start getting into the concepts
around what makes Textpattern so versatile.

LAMP platform

Textpattern runs on the freely available dynamic duo of PHP10 and MySQL.11 PHP is one of
the most widely used server-side scripting languages, and has typically been paired with
MySQL, which is the world’s most popular open-source database. PHP originally stood for
Personal Home Page, but has since changed to a recursive acronym meaning “PHP: Hyper-
text Preprocessor.” MySQL stands for My Structured Query Language. Typically, these two
run on an Apache web server12 installed on the Linux operating system. Together Linux,
Apache, MySQL, and PHP comprise what is commonly referred to as the LAMP platform.
Zero licensing fees and proven stability have made its usage quite prevalent.

The LAMP platform is used by numerous companies worldwide, such as Amazon, Google,
Yahoo!, and Zend. The most notable of these companies is Yahoo!, which created quite a
stir upon announcing in 2002 the big switch from its own proprietary language called
yScript to the open-source solution of PHP. It also hired the creator of PHP, Rasumus
Lerdorf, as its head of Infrastructure Architecture.13 Yahoo! is quite community-minded
and has made many of its code tutorials available for free, so if you are looking for a good
place to get articles aside from the official PHP site, be sure to check out the Yahoo! devel-
oper center.14

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

6

9. http://team.textpattern.com
10. www.php.net
11. www.mysql.com
12. http://httpd.apache.org
13. www.lerdorf.com/resume
14. http://developer.yahoo.com/php

8326CH01.qxd 4/4/07 7:23 PM Page 6

You do not necessarily need to memorize all that information to make use of TXP, but such
tidbits of trivia are good to know. Should you ever want to tinker beneath the hood, these
building blocks will be your starting point. Chapter 2 will show you how to get TXP running
in a Windows, Mac, or Linux environment for local testing, but when you start using it to
power live sites on the Internet, chances are your host will be running the LAMP combina-
tion. Regardless of what type of PC setup you have, the practice you do on your local
computer will translate more or less seamlessly to developing real production sites.

Licensing

Following in the power-to-the-people spirit of the open-source foundation upon which it
is built, TXP is free of charge and flexible with its licensing restrictions. All versions of
Textpattern up to 4.0.x are released under the GNU General Public License (GPL), but
releases as of TXP version 4.1 will be released under the Berkeley Software Distribution
(BSD) license, popularized by the University of California, Berkeley. Without going into all
the detailed legal jargon, this basically means that no matter what, TXP will always remain
free to use. Believe it or not, the latest change in licensing actually makes TXP even freer.

The main difference between the GPL and the BSD license is how they handle derivative
works. Both enable anyone to take the source code and reuse it however they see fit. With
the GPL, if you make changes or additions to the original work, anything you release based
on the original must be licensed under the terms and conditions of the GPL. The BSD
license, however, is a little more permissive. While it also ensures that anyone can take the
original source and modify it, such derivative works do not necessarily have to be released
under the BSD model. The BSD is generally thought to be a bit closer to the completely
unrestricted notion of public domain, for which no copyrights exist.

This open-source ideology allows for proprietary commercial works to be built upon tech-
nology that originated under a BSD license. This model makes it easier on developers
because it does not limit the conditions in which they can deploy their subsequent cre-
ations. Even large companies such as Microsoft and Apple have benefited from using
open-source technologies as a springboard for developing their own specific corporate
software. So what does all this mean for you? Good question. Essentially, it ensures that if
you make money by running sites with TXP, say doing development for your clients or by
selling products via ecommerce, you do not have to pay any royalties to the originators of
the software.

If you do find that it becomes an integral part of your work on the Web, you might con-
sider showing your appreciation by donating financially to those who have worked
laboriously to produce it. Likewise, if you have an idea for changing the way things work,
you are free to do so under the corresponding licensing. However, if you are savvy enough
at PHP programming to do that, you might as well contribute to the core development or
write your own plugins. In Chapter 15 you will learn in more detail how to write custom
plugins, extending the system to fulfill a specific purpose.

SETTING THE STAGE

7

1

8326CH01.qxd 4/4/07 7:23 PM Page 7

Practically speaking

With those geeky details out of the way, it is time to move on to the fundamentals of
Textpattern. The beauty of this system is the way it separates actual content from purely
presentational markup. This is one of the key tenets of what have come to be affection-
ately referred to as Web Standards.15 No longer are we mixing our presentational
elements directly in the markup that contains our content. Eye candy is just that and
should not clutter up the context of the information being conveyed. Therefore, many
purely visual enhancements are relegated to background images—all controlled by a set
of external Cascading Style Sheets (CSS) files.

Web Standards can be thought of as the Web emerging from its infancy and heading
toward an age of maturity. In the past, different browser makers were fighting each other
by offering widely varying implementations of HTML and mixing in their own proprietary
syntax. This led to a polarization of the way websites were built, with JavaScript browser
detection turning away would-be visitors. The whole Internet was mired by a mess of sites
that were inconsistent and incompatible with more than a handful of browsers.

Suppose that every brand of automobile required unique gasoline. Fuel stations would be
a pain to find because only a select few would work with your car. Thankfully, those dark
days are behind us, and a new dawn has given way to the philosophy that agreement on
the basics is best for everyone. Browser manufacturers now compete over who can offer
better features and the closest adherence to the standards.

When a visitor arrives at your site, instead of loading a series of static XHTML and CSS files,
PHP retrieves the corresponding section or article entry based on the requested URL,
merges it with the accompanying page template, and changes it into XHTML before it
reaches the browser. Additionally, Textpattern pulls in your CSS, which is also stored within
the same MySQL database. The only truly static files you will be dealing with are the
images and supporting files that you upload through the TXP content interface, and even
they are conveniently administered through the CMS.

From a maintenance standpoint, it is easier than attempting to juggle multiple static files,
which means more time spent in the actual CMS and far less usage of FTP to send and
retrieve files. Figure 1-5 shows the essence of how Textpattern works from a visitor and an
author perspective, storing and retrieving data.

If this all still seems like a dizzying amount of terminology and acronyms being thrown
about, not to worry. All will be explained through the course of later chapters. What is
important now is that you get a general feel for the concepts behind how Textpattern
works since we will cover each aspect at an increasingly granular level as the book
progresses.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

8

15. www.webstandards.org

8326CH01.qxd 4/4/07 7:23 PM Page 8

Figure 1-5. TXP functionality

An active community
In addition to this book, several online sources can help you hammer out any trouble-
shooting in your understanding of Textpattern. There is quite an active community on the
official forum and throughout the rest of the blogosphere. One might even go so far as to
say that the Textpattern community is hyperactive. If you want to get involved, by all
means—jump in with both feet!

Textpattern FAQs

Like most computer-related questions, you can be sure that whatever topics might come
up, someone else somewhere has probably wondered the exact same thing. This is, of
course, the purpose for the series of frequently asked questions (FAQs) on the Textpattern
website. Here you will find an ever-growing list of recurring inquiries, as shown in Figure 1-6.
Even if a predicament is quite off the wall, you would be surprised how many seemingly
odd situations have already been tackled. When you are not sure whether you should ask
a question on the forum, try searching the FAQs first to see whether the answer has
already been addressed.

SETTING THE STAGE

9

1

8326CH01.qxd 4/4/07 7:23 PM Page 9

Figure 1-6. www.textpattern.com/faq

Textpattern forum

The next place to turn is the official TXP forum. Here there are a multitude of other TXP
users who are very enthusiastic about the system and are always happy to help each other
out, as shown in Figure 1-7. While some people consider the lack of paid tech support a
drawback of open-source software, others view it as one of its strongest points. Typically,
it fosters a community climate of good will. You can think of it like the take-a-penny/
leave-a-penny tray at most restaurants. Sometimes you will find yourself in need of assis-
tance; other times you will be the one offering your expertise. Again, try searching the
forum first before asking what might be a redundant question. The forum crowd is
friendly enough, but it will save everyone time and effort if you can track down a solution
yourself.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

10

8326CH01.qxd 4/4/07 7:23 PM Page 10

Figure 1-7. http://forum.textpattern.com

Textpattern resources

Another site to turn to is Textpattern Resources (see Figure 1-8), located at www.
textpattern.org. There are quite a number of plugins, modifications, tips, and tricks doc-
umented, many of which originated on the forum and were then archived for easier
searching at one central location. This makes an excellent spot to look for additional
Textpattern functionality. Whenever an instance arises in which the core functionality
of Textpattern does not suit the need of a particular scenario, more often than not some-
one else has run into a similar limitation and the problem has already been solved via a
plugin or creative workaround.

Figure 1-8. www.textpattern.org

SETTING THE STAGE

11

1

8326CH01.qxd 4/4/07 7:23 PM Page 11

TextBook International

If you want a helpful site that works more like an encyclopedia, check out TextBook Inter-
national at www.textpattern.net. Here, you will find user-submitted documentation in a
variety of languages, as shown in Figure 1-9. While most of the common parts of TXP are
covered, some areas are still incomplete. Additionally, TextBook International is always in
need of good translators to help round out the information and keep it consistent
throughout the different languages. In the appendices of this book, you will find a similar
TXP syntax listing, which will go more in depth, showing examples and tips for how to best
make use of each instance.

Figure 1-9. www.textpattern.net

TXP Magazine

There is even a site dedicated to tracking notable Textpattern sites: TXP Magazine16 (see
Figure 1-10). At the time of this writing, there are nearly 600 sites listed, all of which have
to meet a certain level of scrutiny to be accepted into the gallery. One such site is that of
Jon Hicks (see Figure 1-11), who is best known for his logo designs of the Mozilla Firefox
browser and Thunderbird email program. Another distinctive site is that of award-winning
designer Jared Christensen (see Figure 1-12), who is known for his bold use of color and

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

12

16. www.txpmag.com

8326CH01.qxd 4/4/07 7:23 PM Page 12

outspoken appraisal of various musical genres. There are also several professional sites
featured, such as Cobalt Engineering,17 an acclaimed construction firm based in Vancouver,
British Columbia, Canada.

Figure 1-10. www.txpmag.com

Figure 1-11. www.hicksdesign.co.uk

SETTING THE STAGE

13

1

17. www.cobaltengineering.com

8326CH01.qxd 4/4/07 7:23 PM Page 13

Figure 1-12. www.jaredigital.com

Textgarden

For license-free blog templates that can be used in Textpattern, be sure to check out
Textgarden at www.textgarden.org (see Figure 1-13). Here you will find a variety of
designs and layouts to choose from. Whether you need something to spruce up an other-
wise default-looking blog or want a starting point for learning how to make your own
templates, Textgarden should be in your list of essential bookmarks. Many of the tem-
plates have been converted because they were popular in other blogging platforms and
their authors were kind enough to give TXP users the right to port them over. These tem-
plates instantly transform the look and feel of your website, but because they are so
commonly used they can make your site seem less unique. You will learn how to do your
own templating in later chapters.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

14

8326CH01.qxd 4/4/07 7:23 PM Page 14

Figure 1-13. www.textgarden.org

Textplates

One of the problems with template repositories is that you cannot always tell at a glance
the good from the bad. If you are looking for templates that have been peer reviewed and
scrutinized, you will want to visit Textplates at www.textplates.com (see Figure 1-14). It
was created by an ambitious young college student at the University of Buffalo named
Tom Fadial. He recognized the benefits of Textpattern, but was disappointed by the
amount of community support behind creating new templates that others could use. Iron-
ically, one of the rivals of Textpattern—another popular platform called WordPress,18

which caters specifically to blogs—was the inspiration for starting a contest. This drew
many quality contestants, with entries that include photoblog templates, re-skins of the
default layout, and even one that boasts streamlined installation as a one-click plugin.
After all was said and done, the TXP community had quite a few solid templates to choose
from.

SETTING THE STAGE

15

1

18. www.wordpress.org

8326CH01.qxd 4/4/07 7:23 PM Page 15

Figure 1-14. www.textplates.com

Key bloggers

Another way to keep up with the Textpattern craze is to follow the blogs of other TXP
fanatics. A convenient way to stay abreast of the latest happenings is to subscribe to each
site’s Rich Site Summary (RSS) or Atom feed with a news aggregator. This way, when new
content is posted, you will be alerted from within one central interface instead of having
to visit each site daily to check for new updates. If this concept sounds foreign to you,
hang in there—RSS and Atom feeds will be covered later in this book.

The authors of this book obviously have their own respective sites from which various CMS
serendipities are shared. While it might seem a bit self-serving, we would be remiss if we
did not point you to our sites for continued updates on creative implementations of
Textpattern:

Cody Lindley: www.codylindley.com

Kevin Potts: www.graphicpush.com

Rob Sable: www.wilshireone.com

Nathan Smith: www.sonspring.com

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

16

8326CH01.qxd 4/4/07 7:23 PM Page 16

Additionally, the aforementioned sites of Jon Hicks and Jared Christensen each contain
compilations of helpful material. You should also keep an eye on the blogs of the core TXP
development team:

Dean Allen: www.textism.com

Mary Fredborg: www.utterplush.com

Pedro Palazón: www.kusor.com

Alex Shiels: www.thresholdstate.com

Sencer Yurdagül: www.sencer.de

At the time of this writing, there is a fairly extensive calendar plugin in development by
Team Textpattern. The process was started by Matthew Smith, a Philadelphia-based
designer at Artiswork.19 He sought to fill a perceived gap in many CMSs—the capability to
produce a navigable schedule of events for several months, years, or decades. After get-
ting a few other like-minded designers on board, the TXP core developers were
commissioned to begin work on the custom plugin.

By the time this book is on store shelves, the plugin will be completed, after which it will
be released as open source. Be sure to check for it on the friends of ED code download
page corresponding to this book because it will be a power plugin that will be a must-have
for both corporate and community organizations. One of the great things about Textpat-
tern is that the development team is not only open to suggestions but is also available for
hire to make them into a reality. Often, after the service has been paid for by a few people,
everyone benefits from their contributions. This is jokingly known as ransoming a plugin,
thus setting it free.

Summary
Since Textpattern is not a commercially driven product, the grassroots effort around it is
what really keeps the development alive. This is what is commonly referred to as viral
marketing, in which one person tells another about something that has had a positive
impact. In the case of TXP, many users find themselves in a position to give back to the
community, so to speak. Due to the exponential impact that word-of-mouth news can
have, there are new blogs springing up on a weekly basis. The authors encourage you to
jump aboard this bandwagon and learn as you go, helping others as your level of knowl-
edge increases. That is, of course, how this book came to be in the first place. The future
holds some exciting possibilities, and we are glad that you are along for the ride.

Now that we have covered some background and fundamentals, the next chapter will
delve deeper and explain how to install TXP on your own computer using Windows XP,
Mac OS X, or Ubuntu Linux. We will iron out some of the typically rough spots for begin-
ners and give you some tips to simplify the whole process. You will also learn how to get
TXP running on a remote Linux web server for actual live site hosting.

SETTING THE STAGE

17

1

19. www.artiswork.org

8326CH01.qxd 4/4/07 7:23 PM Page 17

8326CH02.qxd 4/23/07 12:56 PM Page 18

2 INSTALLING TEXTPATTERN

8326CH02.qxd 4/23/07 12:56 PM Page 19

Now that you know the history of Textpattern and you have an understanding of what the
software and community is all about, it’s time to get down to business. This chapter covers
the steps you need to take to download and install Textpattern on your own computer and
your hosting account.

The benefit of setting up a local installation is that you can develop and test your site in
your own environment. You have full control over your web server and database and don’t
have to worry about visitors stopping by while you’re still building your site. If you’re work-
ing on upgrading an existing site, you can work on the new version while the existing
version is still available on the Internet. And if you’re an aspiring plugin developer, you can
use a local installation to work out the kinks before using the plugin on a live site. Once
you have time to build your site, you have to load it onto a publicly available web server
for others to see.

System requirements
Aside from the Textpattern files that you’ll learn about downloading and installing in this
chapter, there are a few other components that you need to have in place to run
Textpattern. If you want to run a local Textpattern installation, you need to install these
components locally. At the least, you have to find a web host that uses web servers that
meet the following minimum requirements:

PHP 4.3 and above, including the MySQL and XML extensions

MySQL 3.23 and above

While the minimum requirements outlined are enough to run Textpattern, the following
are the recommended requirements as outlined by the Textpattern development team:

PHP 4.4.1 and above or 5.0.2 and above, including the MySQL, XML, and mbstring
extensions running in mod_php or FastCGI mode

MySQL 4.1.7 and above

Apache HTTP Server 1.3 and above or 2.0 and above including the mod_rewrite
module

A web server running a Unix-based operating system including locale support

Clean URL support

To use clean URLs with your Textpattern installation, you need to have the mod_rewrite
module installed on your Apache web server. If you’re setting up a local install, you’ll have
no problem using clean URLs (you’ll learn about that setup later in the chapter). If you’re
using a web host, be sure to ask if mod_rewrite is supported.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

20

8326CH02.qxd 4/23/07 12:56 PM Page 20

What are clean URLs?
If you’re an experienced Internet surfer, you’ve undoubtedly seen an ugly URL that looks
something like the following:

http://www.example.com/?e=KI7dh&ty=78nduuUD&session=powrIDIN7366

This URL is not only hard for your visitors to read and understand but it also hinders the
ability for search engines to crawl and index your site. While you won’t see anything quite
this bad in Textpattern, here’s a simple example. The default First Post article included in
the Textpattern install would be accessed using the following URL in ?=messy permanent
link mode:

http://www.textpatternsolutions.com/index.php?id=1

While it gets the job done, with clean URL support, you can make that address look much
better. Here’s the same URL using the /year/month/day/title permanent link mode:

http://www.textpatternsolutions.com/2007/01/25/first-post

While this URL will take a visitor to the same page, the visitor (as well as search engines)
can get additional details about the contents of the page just from its address. The use of
clean URLs gives your site a boost in terms of both usability and search engine friendliness.

Checking for clean URL support
If you want to confirm whether your host provides mod_rewrite support, create a file
named phpinfo.php and add the following code:

<?php
echo phpinfo();

?>

Then upload the file to your hosting account and load it in your browser. Search for the
Loaded Modules section of the page and confirm that mod_rewrite is listed, as shown in
Figure 2-1.

Figure 2-1. Checking loaded apache modules for mod_rewrite

If your host supports mod_rewrite, but you still can’t get clean URLs to work, there is still
an alternative that you can investigate before resorting to the use of messy URLs. The
.htaccess file found at the root of your Textpattern installation contains three lines that
are commented out. Try removing the # sign preceding each of the following lines:

#DirectoryIndex index.php index.html
#Options +FollowSymLinks
#RewriteBase /relative/web/path/

INSTALLING TEXTPATTERN

21

2

8326CH02.qxd 4/23/07 12:56 PM Page 21

After removing the # sign from the beginning of each line, you have to set the appropriate
path to the Textpattern install. Unless you installed Textpattern in a subdirectory, the new
line looks as follows:

RewriteBase /

If you installed Textpattern in a subdirectory, add the name of that directory as follows:

RewriteBase /mysubdirectory

If after making these changes and uploading your new .htaccess file you still can’t get
clean URLs working, it’s time to contact your host for help or resort to using messy URLs.

If your web host doesn’t support mod_rewrite, you can still use Textpattern, but you have
to select the messy permanent link mode when setting your site preferences. If you’re
intent on using clean URLs but don’t have mod_rewrite support, you might be able to try
an experimental solution such as the one mentioned on the Textpattern weblog in an article
titled “Partly messy: Clean urls without mod_rewrite.”1 But keep in mind that the easiest
(and officially supported) way to support clean URLs is through use of Apache’s
mod_rewrite module.

Choosing a host
Using these minimum and recommended requirements, you’re now ready to start a search
for a web host. There are a multitude of hosting companies that meet or exceed the sys-
tem requirements for running Textpattern. The specific requirements of the site you’re
building might lead you to value certain features over others, so be sure to carefully eval-
uate all your options before purchasing a hosting plan. To get started in your search, check
out a listing of web hosts that the Textpattern development team recommends at
http://team.textpattern.com/hosts/.

Which version of Textpattern?
Just like many other open-source software applications, the Textpattern developers use
the Subversion version control system to manage the Textpattern source code. This means
that the latest version of the Textpattern source code is always available for your use.
However, unless you want to experiment with the latest Textpattern additions (or you’re a
plugin developer looking to test out your plugins against the latest source code), it’s best
to use the stable release versions of Textpattern.

Before being made available for download, release versions of Textpattern are tested by
the development team and the Textpattern community. Bug reports made by users are
investigated and fixed by the development team to ensure that release versions of
Textpattern are as bug-free as possible.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

22

1. www.textpattern.com/weblog/135/partly-messy-clean-urls-without-modrewrite-experimental

8326CH02.qxd 4/23/07 12:56 PM Page 22

There are currently two main development branches for the Textpattern source code: the
4.0 branch and the crockery. The 4.0 branch of the source code should be fairly stable, but
it’s not impossible for bugs to be introduced between official releases. The crockery
should be considered experimental and should not be used on live production sites.

Acquiring Textpattern
Once you decide which version of Textpattern you want to use, there are two ways to go
about acquiring the files you need to complete the installation. The easiest way is to down-
load the latest installation package. If you consider yourself a more advanced user, you can
pull the latest source code from the Subversion repository.

Downloading an official release

To get started with the latest Textpattern release, your first stop is the official download
page at www.textpattern.com (see Figure 2-2).

Figure 2-2. Textpattern official download page (www.textpattern.com/download)

You have the choice of downloading either a zip archive or a tarball. Download your
archive of choice and you’re ready to begin the installation process. Since you’ll be walk-
ing through the typical install process in this chapter, you’ll use the 4.0.4 release version
that is the most recent at the time of this writing. And while you might choose to grab the
latest source code from the Subversion repository based on the instructions covered later
in this chapter, continue with the standard install process using the downloaded release
from the Textpattern download page.

INSTALLING TEXTPATTERN

23

2

8326CH02.qxd 4/23/07 12:56 PM Page 23

Local development on Windows
These instructions are for Windows XP (Home or Professional), but shouldn’t deviate much
on Windows 2000 or Vista. While it is possible to download and install each of the com-
ponents—or (as XAMPP calls them) “modules”—of a local server with PHP and a MySQL
database, it can be tricky to make them all work well together. You can get a jump start on
developing locally with Textpattern by making use of a free and easy-to-use software pack-
age called XAMPP.

Installing XAMPP
The first step is to fire up the web browser of your choice and go to www.apachefriends.
org/en/xampp-windows.html. Here you see the XAMPP for Windows home page, which
should be similar to Figure 2-3. Within the phrase The XAMPP 1.6.0a is available!, click the
XAMPP 1.6.0a link to jump to the actual download options. Next, click the Installer link for
the [Basic package] to begin downloading XAMPP. Once you finish downloading the
installer, you’re ready to proceed.

Figure 2-3. XAMPP for Windows home page (www.apachefriends.org/en/
xampp-windows.html)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

24

8326CH02.qxd 4/23/07 12:56 PM Page 24

111d06b87239e880d24576f52e16c748

Double-click xampp-win32-1.6.0a-installer.exe to begin the installation process.
Choose English from the drop-down menu and click the OK button.

Once the Setup Wizard loads up, click the Next button. You are asked for the location of
where to install XAMPP, as shown in Figure 2-4. It’s best to leave it at the default value of
C:\Program Files (which will install to C:\Program Files\xampp), so click the Next button
once more.

Figure 2-4. The XAMPP Setup Wizard asks where to install XAMPP.

Next, you have a couple of install configuration choices, as shown in Figure 2-5. It is a good
idea to have the boxes next to Create a XAMPP desktop icon or Create an Apache Friends
XAMPP folder in the start menu checked (or both, if you like). Under SERVICE SECTION, you
might install most of the different modules as services, which means that they can (and do
by default) launch automatically when you start Windows. If you are not planning to use
your local server very often, leave these boxes unchecked. You can easily change this later.
Click the Install button.

INSTALLING TEXTPATTERN

25

2

8326CH02.qxd 4/23/07 12:56 PM Page 25

Figure 2-5. The XAMPP Setup Wizard can create shortcuts and setup
services for ease of use.

XAMPP now installs many files, displayed in a scrolling box, giving you a constant update
about what’s happening, as shown in Figure 2-6. The installation can take one to several
minutes, depending upon the speed of your computer. Once the install has finished, press
the Finish button.

Figure 2-6. The XAMPP Setup Wizard is installing all the necessary files.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

26

8326CH02.qxd 4/23/07 12:56 PM Page 26

Finally, installation is complete and you are asked whether you want to start the XAMPP
Control Panel. Click the Yes button, and the XAMPP Control Panel is launched, as shown in
Figure 2-7.

Figure 2-7. XAMPP Control Panel

Using XAMPP
The XAMPP Control Panel (refer to Figure 2-7) enables you to start, stop, check, and refresh
the status; and launch the administration sections of each of its modules.

You only need to have Apache (the HTTP server) and MySQL (the database server) run-
ning. The other modules, FileZilla (FTP server) and Mercury (email server), can be left
turned off; they are not needed for running Textpattern. Click the Start button next to
Apache and MySql to load up each.

One program that can interfere with your Apache server is Skype because it uses the same
resources to connect to the Internet as a local server. Make sure to shut it down if your
Apache server does not start, and try again.

Next to each module is a checkbox labeled Svc. Checking each installs that module as a
Windows service. As mentioned during the installation process, services can (and do, by
default) launch automatically when you start Windows. If you don’t plan to use your local
server very often, leave these checkboxes unchecked. Because of XAMPP’s handy little
Control Panel, running these modules as services doesn’t offer any additional benefit. You
might also install the Control Panel itself as a service by configuring the Service Settings
area (found by clicking the button labeled such).

INSTALLING TEXTPATTERN

27

2

8326CH02.qxd 4/23/07 12:56 PM Page 27

Click the Admin button of the Apache component to launch your browser and show the
XAMPP for Windows page (see Figure 2-8). It contains all the information about your instal-
lation, as well as a few helpful utilities.

Figure 2-8. XAMPP information and utilities

MySQL setup
With XAMPP installed and running, you can now create a MySQL database and user for
Textpattern to use. From the XAMPP for Windows page, click the phpMyAdmin link to
launch an easy-to-use database management utility (see Figure 2-9).

Figure 2-9. phpMyAdmin main page

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

28

8326CH02.qxd 4/23/07 12:57 PM Page 28

Click the Privileges link; then click Add new User on the following page.

In an effort to make your local server mirror a remote hosting environment as closely
as possible, create a username and password that will reflect that. For the sake of sim-
plicity, I am using an easy-to-remember username of maryfredborg with the password
password4textpattern. Needless to say, you should pick something more secure for any
live site. In the area labeled Global privileges, click the Check All link. Look things over to
make sure they look similar to Figure 2-10 and then scroll to the bottom and click Go. You
see this confirmation screen: You have added a new user.

Figure 2-10. Creating a new user in phpMyAdmin

Creating a User

INSTALLING TEXTPATTERN

29

2

8326CH02.qxd 4/23/07 12:57 PM Page 29

Click the tab at the top of the screen labeled Databases. On the Databases screen (see
Figure 2-11), type in the name of your new database, textpattern, and then click Create.
On the following page, you see this confirmation message: Database textpattern has been
created.

Figure 2-11. Creating a new database in phpMyAdmin

Initial preparations
So far, you have laid the groundwork for a nice local testing environment: you have
installed XAMPP, and created a username and database for Textpattern to use. You have
only a few more preparations before you install Textpattern.

By default, Windows hides the file extension of several types of file, displaying only the file
name; for extension-only files such as .htaccess, Windows hides them completely. This
can cause great confusion and frustration when attempting to develop for the Web, so it’s
a good idea to turn this particular feature off. It’s easy to do, doesn’t harm anything, and
can be easily switched back on if you find you don’t like having it off.

1. Open up My Computer (it’s on the desktop by default).

2. From the Tools menu, select Folder Options, as shown in Figure 2-12.

3. The Folder Options window opens (see Figure 2-13). Click the View tab.

4. Find and uncheck the checkbox labeled Hide extensions for known file types.
Click OK.

Show File Extensions

Creating a Database

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

30

8326CH02.qxd 4/23/07 12:57 PM Page 30

Figure 2-13. Windows Folder Options dialog box

If you have not yet downloaded Textpattern, go to www.textpattern.com/download and
grab the Zip file of the latest version. (At the time of this writing, it is version 4.0.4.)

1. Extract textpattern-4.0.4.zip by using either the Windows XP built-in “com-
pressed folders” feature, or file archive software such as 7Zip.2 The result is a folder
of the same name that contains several files and folders. Feel free to read through
and/or delete the HISTORY.txt and README.txt files because they are not perti-
nent to the Textpattern installation process.

Prepare the Files

Figure 2-12. Selecting Folder Options
from the Tools menu

INSTALLING TEXTPATTERN

31

2

2. www.7-zip.org

8326CH02.qxd 4/23/07 12:57 PM Page 31

2. Rename the textpattern-4.0.4 folder to example.dev and move it to your
C:\Program Files\xampp\htdocs directory. This directory will be the location that
houses your local Textpattern site.

I like to name the directory the same as the public-facing site, except instead of a domain
extension such as *.com, I put *.dev at the end. This indicates that the site is in develop-
ment and helps to differentiate it from the real domain name in the address bar. You can,
of course, name your directory something different from example.dev to more accurately
reflect the domain name of your site.

With XAMPP running, you should be able to navigate to http://localhost/example.dev/,
but it is not exactly an ideal URL structure since your real site will live at http://example.
com/. What you need to do is make http://example.dev/ point to the local install of
Textpattern.

First, you need to tell Windows to “pretend” that example.dev is a real domain:

1. Open the text editor of your choice and go to File ä Open.

2. The Open dialog box is launched. In the File name: textbox, type in C:\WINDOWS\
SYSTEM32\DRIVERS\ETC\HOSTS. Click Open.

3. You should see one simple line of text, 127.0.0.1 localhost. You might have more
lines than that, but this is the important one. As shown in Figure 2-14, after
localhost, type a space and then enter example.dev. Save the file.

Figure 2-14. Edited Windows HOSTS file

Now that Windows recognizes example.dev, all that’s left is to tell Apache how to handle
the request for it:

1. With your text editor open, go to File ä Open.

2. The Open dialog box is launched. In the File name: textbox, enter C:\Program
Files\xampp\apache\conf\extra\httpd-vhosts.conf. Click Open.

3. Replace lines 19–42 with the following and then save the file:

NameVirtualHost localhost:80

Update httpd-vhosts.conf

Update Your HOSTS File

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

32

8326CH02.qxd 4/23/07 12:57 PM Page 32

<VirtualHost localhost>
ServerName localhost
DocumentRoot "C:/Program Files/xampp/htdocs"

</VirtualHost>

<VirtualHost example.dev>
ServerName example.dev
DocumentRoot "C:/Program Files/xampp/htdocs/example.dev"

</VirtualHost>

Only one thing remains: enabling the Apache mod_rewrite module, so that you can enable
clean URLS later on.

1. With the text editor open, go to File ä Open.

2. The Open dialog box is launched. In the File name: textbox, type C:\Program
Files\xampp\apache\conf\httpd.conf. Click Open.

3. Scroll to line 118 to find the line #LoadModule rewrite_module modules/
mod_rewrite.so (see Figure 2-15).

4. Remove the pound symbol (#) from the start of the line and save the file.

Figure 2-15. Enabling the mod_rewrite Apache module

Update httpd.conf

You might now be asking this question: Why does this example.dev type of
thing matter? Quite simply, most professional web developers prefer to work
with root-relative URL schemes. This means you can write /files/filename.
zip instead of trying to figure out how many levels deep a page is in the site
structure and then having to type ../../../files/filename.zip. To an
Apache web server, the dot-dot-slash syntax ../ means “go up one level.”
Without root-relative URLs, it is extremely tedious going up and down
through directories to reference files within your own site. This way, you can
more easily port a local site to a live server. This little extra work is worth it in
the long run.

INSTALLING TEXTPATTERN

33

2

8326CH02.qxd 4/23/07 12:57 PM Page 33

Finally, stop and then start the Apache module from the XAMPP Control Panel for the
changes to take effect.

You should now be able to type http://example.dev/ in your browser and receive this
message: config.php is missing or corrupt. To install Textpattern, visit textpattern/setup/. This
just means that you have not yet officially installed Textpattern.

Load the following address in your browser: http://example.dev/textpattern/. It begins
the installation process.

Installing Textpattern
The first thing you need to do is choose your language. It defaults to English (GB), which is
the style of English used in Great Britain. You can change it to English (US) or any number
of other languages. For the purposes of this chapter, I assume you chose one of the two
variants of English. After clicking the Submit button, you should be on the page shown in
Figure 2-16.

Figure 2-16. Textpattern install details input

Enter the information according to the MySQL database that you set up in the previous
steps. As you see, some of the information is prepopulated. You just need to specify your
MySQL login, password, and database name. The rest you can leave untouched. Click next.

Restart Apache

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

34

8326CH02.qxd 4/23/07 12:57 PM Page 34

The next page should look like Figure 2-17. Follow the instructions on the screen and copy
the text in the box. Paste this text into a new file, and save it as config.php in this direc-
tory: C:\Program Files\xampp\htdocs\example.dev\textpattern\. Feel free to delete
the config-dist.php file, which is just an example placeholder. After you make those
changes, go back to your browser and click I did it. On the next page (see Figure 2-18), you
are prompted to create an administrative account. Enter your name, desired username,
password, and email address; then click next.

Figure 2-17. Textpattern install config.php contents

Figure 2-18. Textpattern install user account creation

On the next page, you see this confirmation message that Textpattern has been installed:
That went well. Database tables were created and populated. You should be able to access the
main interface with the login and password you chose. Thank you for your interest in Textpattern.
Click the link text main interface and you are taken to the login screen.

Enter the username and password you specified. You then see a page like Figure 2-19, with
a large list of possible languages. This page simply shows you that the language you chose
has been set as the default, and that you can install further languages if desired. Click the
Diagnostics tab at the top of the page, and the screen shown in Figure 2-20 is displayed.

INSTALLING TEXTPATTERN

35

2

8326CH02.qxd 4/23/07 12:57 PM Page 35

Figure 2-19. Textpattern language preferences

Figure 2-20. Textpattern diagnostics after installation

You should see one error in red, reminding you to delete the setup directory. Do so now
and refresh your browser. You should now see the message: All checks passed!
Congratulations, you have Textpattern running on your own local server.

Local development on Mac OS X
If you are reading this section of the chapter, you probably march to the tune of a differ-
ent drummer and are not among the majority of consumers who use a Windows PC. Not

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

36

8326CH02.qxd 4/23/07 12:57 PM Page 36

to worry—you haven’t been left high and dry. This section looks at how to create a local
testing environment on OS X. For this installation, you use the free program called MAMP,
which stands for Mac, Apache, MySQL, and PHP. This program not only makes things a lit-
tle easier than compiling Apache and PHP installations from the respective source code
but it also enables you to do things with a little more style. If you are the adventurous
type, you can even use Subversion (SVN) to get the latest builds of Textpattern for testing.

Installing MAMP

You first need to fire up the web browser of your choice and go to www.mamp.info. Here,
you see the MAMP home page, which looks something like Figure 2-21. There is probably
a prominent link for MAMP Pro, the retail version of MAMP. However, for your needs, you
can simply grab the freely available version. The basic version has all the horsepower of its
professional counterpart, just without some of the graphical interface aspects. If you take
a liking to MAMP, you might consider purchasing the Pro version because it helps to auto-
mate a lot of the grunt work for you. For the purposes of this chapter, you use the basic
version.

To get the basic version of MAMP, click the link labeled Download now under the grey ele-
phant icon, which should take you to a download page at Living-E, the parent company that
produces MAMP. The URL should be something like this: www.living-e.com/products/
MAMP-PRO/download.php. The page should look something like Figure 2-21.

Figure 2-21. MAMP download page

INSTALLING TEXTPATTERN

37

2

8326CH02.qxd 4/23/07 12:57 PM Page 37

This chapter does not cover the MAMP Pro installation because it is pretty self-explanatory
(not to mention the fact that it costs money). The download you use is simply labeled
MAMP. As of this writing, the current stable version is 1.4.1, which is the one used here.
Obviously, if there is a newer stable version available by the time you read this, go ahead
and use it. There are three possible download types available for MAMP: Universal Binary,
PPC, and Intel—because Apple recently switched from Power PC (PPC) processors to Intel-
based processors. If you know which of these two processor types powers your Mac,
choose accordingly. If you are uncertain, just get the Universal Binary installation file. The
Universal Binary takes both types of processor into account and is thus a slightly larger
download.

Once you click the Download link, you are taken to a page in which you can enter your
personal information, and can opt to receive the Living-E newsletter. If you want to do so,
enter your information. Otherwise, just click the Next button to skip that process alto-
gether. A page is displayed, in which you are prompted to begin the download automati-
cally. Once the file has finished downloading, it should be on your desktop (or wherever
you store downloaded files). Depending on which file you chose to download based on
your processor type, double-click MAMP_1.4.1_intel.dmg.zip, MAMP_1.4.1_ppc.dmg.zip,
or MAMP_1.4.1_universal.dmg.zip. The *.dmg file by the same name uncompresses.
Double-click this file and you see a window that looks like Figure 2-22.

Figure 2-22. MAMP installation

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

38

8326CH02.qxd 4/23/07 12:57 PM Page 38

One of the nice things about the MAMP installation process is that it is so intuitive. Simply
drag the folder icon with the MAMP logo on it to the Applications folder, just as the
arrow indicates. The files begin copying over, which might take a few seconds or minutes
depending on your computer’s hardware. When it is complete, you can safely eject the
MAMP installer file by dragging it to the trash. You can also discard the *.dmg and *.zip
files.

If you navigate to the /Applications/MAMP/ directory, you see a file named MAMP
Control.wdgt. If you like, you can double-click this file to install an OS X Dashboard
widget that enables you to easily start and stop the MAMP servers (MAMP then runs in the
background and doesn’t clutter up your dock). Dashboard asks you if want to install the
MAMP Control widget, which looks something like Figure 2-23. If you want to install it,
simply click Keep; it is then added to your assortment of widgets.

Figure 2-23. MAMP Control widget installer

Before you make use of the widget, however, you first need to run MAMP once (by using
the actual application file) to change a few things about the default configuration. In the
/Applications/MAMP/ directory, double-click the main MAMP.app file. You should see a
window that looks like Figure 2-24.

INSTALLING TEXTPATTERN

39

2

8326CH02.qxd 4/23/07 12:57 PM Page 39

Figure 2-24. MAMP main window

On the main MAMP window, click the button labeled Preferences and then click the sub-
menu button labeled Ports. By default, the Apache Port is 8888, and the MySQL Port is
8889. You should change the Apache port to 80, which is the default port for all web
servers. This will save having to type :8888 at the end of every web address you want to
use locally. To do this, simply click the button labeled Set to default Apache and MySQL
ports. Note that the MySQL port changes to 3306. Make sure that the ports have changed
to reflect the screen depicted in Figure 2-25.

Figure 2-25. MAMP Preferences—Ports

Next, you need to return to the Preferences area and change one more thing. This time, go
to the Apache subtab and change the Document Root from the default /Applications/
MAMP/htdocs to reflect your particular username: /Users/username/Sites (note that
there is no trailing slash at the end). The reason for this change is twofold. First, it keeps
your sites stored separately from the /Applications/MAMP/ directory, so that if you
upgrade MAMP, none of your actual web development files is overwritten. Second, this is
the native directory for OS X Personal Web Sharing. While you will not actually be making
use of Personal Web Sharing in this chapter, it is helpful to keep things consolidated, so
that all your locally hosted sites are in the same root directory.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

40

8326CH02.qxd 4/23/07 12:57 PM Page 40

Creating a MySQL database
Now that you have everything squared away with the MAMP install, you can create a
MySQL database to house your Textpattern information. With MAMP running, open a web
browser and enter http://localhost/MAMP/. (Note the importance of the uppercase let-
ters. If you type lowercase /mamp/, you probably see a Not Found error, which is not what
you are shooting for.) You should now see a page that looks like Figure 2-26.

Figure 2-26. Default start page for MAMP (http://localhost/MAMP/)

From here, click the link in the menu named phpMyAdmin. Here, you should see a page
that has a sailboat on it, with the word phpMyAdmin written in purple and orange. Click the
link named Privileges and on the next page, click Add new User. You could use the default
MAMP username and password (root/root) with your Textpattern installation, but that is
typically thought of as bad practice. Plus, most hosting companies do not allow you to cre-
ate a password that is the same as your username.

In an effort to make your localhost mirror a remote hosting environment as closely as
possible, create a username and password to reflect it. For the sake of simplicity, I am
making my username the same as my Mac login, with my super-secret password:
password4textpattern. (Needless to say, you should pick something a bit more secure for

INSTALLING TEXTPATTERN

41

2

8326CH02.qxd 4/23/07 12:57 PM Page 41

your live site.) In the Global privileges area, click the Check All link. Look things over to
make sure they look like Figure 2-27 and then scroll to the bottom and click Go. You then
see a confirmation screen that says this: You have added a new user.

Figure 2-27. phpMyAdmin, adding a user

Now that you have created a username and password, let’s make an actual database. Click
the Databases tab at the top of the screen. On the Databases screen that displays (see
Figure 2-28), enter the name of the new database, in this case textpattern, and then click
Create. On the next page, you see a confirmation message: Database textpattern has been
created.

Figure 2-28. Adding a database

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

42

8326CH02.qxd 4/23/07 12:57 PM Page 42

Installing Textpattern
So far, you have laid the groundwork for a nice local testing environment. You have
installed and configured MAMP, and have a username and database created. If you have
not yet downloaded Textpattern, go to www.textpattern.com/download/ and get the lat-
est version. (At the time of this writing, it is version 4.0.4.) Download the Zip file named
textpattern-4.0.4.zip, and then find it on your desktop and double-click it. This
extracts a folder by the same name. Inside that folder, you see several files and directories.
Feel free to read through and/or delete the HISTORY.txt and README.txt files, as they are
not pertinent to the Textpattern installation process. Rename the textpattern-4.0.4
folder to example.dev and move it to your /Users/username/Sites/ directory, which is
the location that will house your local Textpattern site.

I like to name the directory the same as the public-facing site, except instead of a domain
extension such as *.com, I put *.dev at the end. This indicates that the site is in develop-
ment and helps to differentiate it from the real domain name in the address bar. You can,
of course, name your directory something different from example.dev to more accurately
reflect the domain name of your site.

With MAMP running, you should be able to navigate to http://localhost/example.dev/,
but this is not exactly an ideal URL structure, since your real site will live at example.com.
What you need to do is make http://example.dev point to the local install of Textpattern.
To do that, you need a text editor that can read hidden files, such as the retail program
TextMate (www.macromates.com). Alternatively, you can download the free program
TextWrangler (www.barebones.com/products/textwrangler/), which can also edit hidden
files.

With the text editor of your choice, go to File ä Open or File ä Open Hidden, depending
on which program you are using. In the window that opens, click Macintosh HD, go to the
directory named etc, and open the file named hosts. You should see a pretty small
amount of text (see Figure 2-29). On line 7, you see 127.0.0.1 localhost. After
localhost, enter example.dev and then save the file. You will probably be prompted for
your OS X login password. This is a normal security feature, so don’t be alarmed. Enter
your password and then click OK.

Figure 2-29. hosts file

You need to edit just one more file to make things work properly. With your text-editing
program, browse to the /Applications/MAMP/conf/apache/ directory and open the
httpd.conf file. Scroll all the way to the end of the file. At around line number 1133, there

INSTALLING TEXTPATTERN

43

2

8326CH02.qxd 4/23/07 12:57 PM Page 43

is this text: # NameVirtualHost 127.0.0.1. The pound sign is an Apache comment,
keeping that line of code from doing anything. Remove the #, leaving NameVirtualHost
127.0.0.1; then add this bit of code on the next few lines and save the file (you then need
to restart MAMP for the changes to take effect):

<VirtualHost localhost>
ServerName localhost
DocumentRoot "/Users/username/Sites"

</VirtualHost>

<VirtualHost example.dev>
ServerName example.dev
DocumentRoot "/Users/username/Sites/example.dev"

</VirtualHost>

By specifically adding the location for localhost, you ensure that no other sites stored
within the typical Personal Web Sharing folder are affected. Essentially, this keeps
http://localhost/ pointing to the correct location. The next line concerns the new site
you are creating locally, which catches http://example.dev/ and makes it point to the
new directory that you have created. (Note that it does not work with www.example.dev,
so be sure to just type the faux domain name with no www prefix.)

You should now be able to type http://example.dev/ in your browser and you receive
this message: config.php is missing or corrupt. To install Textpattern, visit textpattern/setup/.
This just means that you have not yet officially installed Textpattern. Enter http://
example.dev/textpattern/ into your browser to begin the installation process. The first
thing you need to do is choose your language. It defaults to English (GB), which is the style
of English used in Great Britain. You can change this to English (US) or any number of
other languages. For the purposes of this chapter, I assume you chose one of the two vari-
ants of English. After clicking Submit, you should be at the page shown in Figure 2-30.

You might now be asking this question: Why does this example.dev type of
thing matter? Quite simply, most professional web developers prefer to work
with root-relative URL schemes. This means you can write /files/filename.
zip instead of trying to figure out how many levels deep a page is in the site
structure and then having to type ../../../files/filename.zip. To an
Apache web server, the dot-dot-slash syntax ../ means “go up one level.”
Without root-relative URLs, it is extremely tedious going up and down
through directories to reference files within your own site. This way, you can
more easily port a local site to a live server. This little extra work is worth it in
the long run.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

44

8326CH02.qxd 4/23/07 12:57 PM Page 44

Figure 2-30. Textpattern install, database info

Enter the information according to the MySQL database that you set up in the previous
steps. As you see, some of the information is prepopulated. You just need to specify your
MySQL login, password, and database name. The rest you can leave untouched. Click next.
The following page should look like Figure 2-31. Follow the instructions on the screen and
copy the text in the box. Paste this text into a new file and save it as config.php in this
directory: /Users/username/Sites/example.dev/textpattern/. You can also feel free to
delete the config-dist.php file, which is just an example placeholder. Once you have
made those changes, go back to your browser and click I did it.

Figure 2-31. Textpattern install, configuration

INSTALLING TEXTPATTERN

45

2

8326CH02.qxd 4/23/07 12:57 PM Page 45

On the next page (see Figure 2-32), you are prompted to create an administrative account.
Enter your full name, username, password, email address, and then click next.

Figure 2-32. Textpattern install, create account

On the next page, you see this confirmation message that Textpattern has been installed:
That went well. Database tables were created and populated. You should be able to access the
main interface with the login and password you chose. Thank you for your interest in Textpattern.
Click the link text main interface and you are taken to the login screen. Enter the username
and password you specified. You then see a page that looks like Figure 2-33, with a large
list of possible languages. It simply shows you that the language you chose has been set as
the default. You can leave things untouched. Click the Diagnostics tab at the top of the
page, and you are taken to the screen shown in Figure 2-34.

Figure 2-33. Textpattern install, languages

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

46

8326CH02.qxd 4/23/07 12:57 PM Page 46

Figure 2-34. Textpattern install, diagnostics

If you see errors in red about the .htaccess file being missing and the Clean URL test
failing, it means that you did not copy over the .htaccess file from the Textpattern
download to your example.dev folder. The easiest way to do this is to re-extract the down-
loaded textpattern-4.0.4.zip file, open your text-editing program, browse to the
textpattern-4.0.4 folder on your desktop, open the .htaccess file, and then save it
again in the /Users/username/Sites/example.dev/ directory. If you receive an error say-
ing that the setup directory still exists, go to /Users/username/Sites/example.dev/
textpattern/ and delete the folder named setup. Click Refresh in the browser and you
should now see the confirmation message All checks passed!

Hosted environment setup
If you’re ready to install Textpattern on your hosting account, you need to have a File
Transfer Protocol (FTP) client to upload the source code to your server.

INSTALLING TEXTPATTERN

47

2

8326CH02.qxd 4/23/07 12:57 PM Page 47

Database setup

Before beginning the Textpattern installation, you need to have your MySQL database and
user setup completed. You have to know the database name, database username and pass-
word, and database server name. Make sure that your database is set up and that you have
all this information before you proceed with the Textpattern install.

Most web hosts offer the use of web-based database administration tools such as
phpMyAdmin3 or cPanel4 to help you create your database. Check with your hosting
provider to determine the easiest way to create your MySQL database.

FTP files to host

Start by unzipping the textpattern-4.0.4.zip or textpattern-4.0.4.tar.gz file to your
local drive. When the archive is extracted, you are left with a directory called
textpattern-4.0.4 that contains all the Textpattern files. You have to upload the contents
of that textpattern-4.0.4 directory to the web root directory of your hosting account.
The web root directory is frequently named public_html, but that ultimately depends on
your hosting provider. Be sure to upload only the contents of the folder, not the folder
itself.

A multitude of FTP programs are available. If you don’t already have a favorite, try one of
the following:

CoreFTP5 (Windows)

FileZilla6 (Windows)

Transmit7 (Mac)

CyberDuck8 (Mac)

Once your files are uploaded, make sure that the /files, /images, and /textpattern/tmp
directories are writeable to support Textpattern’s file- and image-upload capabilities.

Install process
Now that the local or hosted environment setup is completed by creating the MySQL data-
base and copying the Textpattern files to the web server, it’s time to begin the Textpattern
installation process.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

48

3. www.phpmyadmin.net
4. www.cpanel.net
5. www.coreftp.com
6. http://filezilla.sourceforge.net
7. www.panic.com/transmit
8. www.cyberduck.ch

8326CH02.qxd 4/23/07 12:57 PM Page 48

Installing Textpattern

1. Once all the Textpattern files are unzipped and uploaded to the web server,
you have to determine the URL of the /textpattern/ directory of your
Textpattern install. For this example, you install Textpattern at the root of
www.textpatternsolutions.com. Therefore, you need to navigate to
www.textpatternsolutions.com/textpattern.

2. As the page is loaded, the Textpattern installation process automatically begins. The
first step in the install process is to configure the base language for the install, as
shown in Figure 2-35. Select your language of choice and click Submit to proceed.

Figure 2-35. Textpattern language selection

3. After you select your language, you are asked to enter information about the data-
base and the path to your Textpattern files (see Figure 2-36). Textpattern intelli-
gently suggests values for the Site path and Site URL based on the location of the
installation scripts. In most cases, you shouldn’t have to change these values.
Simply confirm that they are correct and click next after you enter the database
connection information.

Figure 2-36. Textpattern database and site path configuration

INSTALLING TEXTPATTERN

49

2

8326CH02.qxd 4/23/07 12:57 PM Page 49

4. Based on the information you entered, Textpattern confirms that it can connect to
your database. If successful, a confirmation screen is displayed, as shown in
Figure 2-37. As noted on this screen, you need to paste the contents of the textarea
into a file called config.php in the /textpattern/ directory of your installation.
Take a look in that directory; you see a placeholder file called config-dist.php
that comes with the Textpattern download. You can either rename that file to
config.php or delete it altogether before you create your new file. Once you have
created your config.php file containing the information shown in Figure 2-37, click
I did it to continue.

Figure 2-37. Time to create the config.php file

5. You’re now asked to create the first administrative user for your Textpattern install.
Fill out all fields in the form shown in Figure 2-38, including your full name, login
name, password, and email address.

Figure 2-38. Setting up your first Textpattern user

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

50

8326CH02.qxd 4/23/07 12:57 PM Page 50

6. At this point, Textpattern creates the necessary database tables and populates
them with your first Textpattern user and some minimal test data to verify that
your installation is functioning properly. If all goes well, you receive a final confir-
mation message, as shown in Figure 2-39, and you’re ready to log in to the
Textpattern admin interface for the first time. Just click the link labeled main inter-
face to continue.

Figure 2-39. Successful completion of the Textpattern installation process

7. You’re now ready to log in to Textpattern using the login prompt shown in
Figure 2-40. By default, Remain logged in with this browser is checked. When this box
is checked, a browser cookie is created so that you’re not required to enter your
login credentials each time you try to access the Textpattern admin interface. If
you’re working on a shared computer, it’s best to leave this option unchecked.

Figure 2-40. Textpattern admin interface login prompt

INSTALLING TEXTPATTERN

51

2

8326CH02.qxd 4/23/07 12:57 PM Page 51

Checking site preferences

1. After logging in for the first time, you are taken directly to the Admin ä Preferences
ä Language tab to confirm your language preferences (see Figure 2-41).

Figure 2-41. Confirming the active language

2. Once you confirm the Currently active language, you can always return to this tab to
update your installed language or install new languages. The Admin ä Preferences
ä Language tab always shows the most recent updates available for all languages
supported by Textpattern, as shown in Figure 2-42.

3. After confirming your language preferences, click Basic at the top of the page to
verify preferences for article publishing and commenting on your site. The default
preferences are shown in Figure 2-43.

4. Start customizing your install by setting your site name, URL, and slogan; and con-
firming the time and date settings. You should also set your desired permanent link
mode based on your ability to support clean URLs. Finally, if your site accepts com-
ments, you can customize the rules for posting and presenting them on your arti-
cles. (The use of site preferences is covered in more detail later in Chapter 5.)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

52

8326CH02.qxd 4/23/07 12:57 PM Page 52

Figure 2-42. The Language tab shows the most recent update time for all language files.

Figure 2-43. The Basic tab shows preferences for article publishing and commenting on
your site.

INSTALLING TEXTPATTERN

53

2

8326CH02.qxd 4/23/07 12:57 PM Page 53

Checking site diagnostics

After you do an initial check of your site preferences, it’s time to do a quick diagnostic
check of your Textpattern install. The details of the Admin ä Diagnostics tab is covered in
full in Chapter 5, but before you proceed any further, make sure that there aren’t any
problems with the install.

The only problem noted with the install as shown in Figure 2-44 is that you haven’t
removed the /textpattern/setup directory, which contains the scripts used to run
Textpattern’s install. While this doesn’t prevent Textpattern from running, it’s always rec-
ommended that this directory be removed after the installation process is completed (for
security reasons). The scripts in this directory could be used by unauthorized users to con-
nect to your database, so it’s best to delete the setup directory as soon as the install
process is complete.

Figure 2-44. The Diagnostics tab with preflight check warnings

Once you delete this directory and refresh the Diagnostics tab, your install should pass all
diagnostic tests (see Figure 2-45).

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

54

8326CH02.qxd 4/23/07 12:57 PM Page 54

Figure 2-45. The Diagnostics tab with all checks passed

Preflight checks
Aside from the setup directory warning shown in Figure 2-44, there are several other pre-
flight warnings you might see after installing Textpattern. The following list contains other
preflight warnings that you might see on the Diagnostics tab:

PHP version 4.3 is required. You are running a version of PHP that is lower than 4.3.0.

The $path_to_site variable is not set. Try updating index.php.

The directory set in the $path_to_site variable cannot be reached. Try updating
index.php.

A DNS lookup on your web domain failed.

Your site URL has a trailing slash. Remove the trailing slash.

The index.php file cannot be found.

Textpattern cannot write to the images directory. Make the directory writeable.

Textpattern cannot write to the files directory. Make the directory writeable.

Textpattern cannot write to the temp directory. Make the directory writeable.

Clean URLs are only supported on the Apache HTTP server. Use at your own risk.

INSTALLING TEXTPATTERN

55

2

8326CH02.qxd 4/23/07 12:57 PM Page 55

The .htaccess file cannot be found.

The mod_rewrite module cannot be found. Change your permanent link mode to
?=messy.

File uploads are disabled.

The /textpattern/setup directory still exists. Remove the directory.

Your PHP installation is missing the mail() function which means that Textpattern will not
be able to send out emails, limiting some functionality.

Your version of PHP has security related risks. Turn register_globals off or update to a
newer version of PHP.

Old placeholder files exist from earlier versions of Textpattern. Remove the files.

Certain Textpattern files are missing. Add the missing files.

Certain Textpattern files are old. Replace the old files with the most recent version.

Certain Textpattern files have been modified.

You are running a development version of Textpattern under the Live production status.

Certain PHP functions are disabled which might limit some functionality.

Your Site URL preference doesn’t match your actual site URL.

The clean URL test failed. Change your permanent link mode to ?=messy.

You have MySQL table errors. Try repairing your MySQL database.

Keep in mind that not all preflight warnings prevent your site from functioning properly;
they are meant to notify you of potential problems and configuration issues. It’s always
best to resolve as many warnings as possible, but you might not have total control over
them in a hosted environment. For any persistent problems, take the following steps to
troubleshoot:

1. Check the Textpattern FAQ.9 More often than not, you’ll find the solution to your
problem there.

2. Search the Textpattern Forum10 to talk to others having the same problems.

3. Post a new topic in the Troubleshooting forum.11

Messy URLs for testing

Now that the install process is complete and you verified your site preferences and diag-
nostics, its time to delve into the process of developing your site. While you already know
the benefits of using a clean URL scheme for your live site, clean URLs also add an addi-
tional level of complexity to the debugging process as you build your site.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

56

9. http://textpattern.com/faq
10. http://forum.textpattern.com
11. http://forum.textpattern.com/viewforum.php?id=3

8326CH02.qxd 4/23/07 12:57 PM Page 56

To simplify the process of building your first Textpattern sites and avoid potential prob-
lems that might be brought about by the use of clean URLs, you might find it helpful to
use the ?=messy permanent link mode to start out. Waiting until you’re nearing comple-
tion of your site development helps to isolate potential problems and might save you
hours of frustration. If you do choose to use clean URLs from the start, remember to
switch to messy URLs when problems crop up to verify that the problems you see aren’t
related to your permanent link mode.

Advanced topics
Now that the initial setup process is done, you can turn your attention to some of the
peripheral accompaniments of Textpattern. One of the important aspects to keep official
development on track is Trac (no pun intended). Without further ado, here is what it’s all
about.

Textpattern development site

The Textpattern development site, shown in Figure 2-46, provides a web-based interface
into the Subversion repository that contains the Textpattern source code. The site, pow-
ered by Trac,12 offers a way for you to browse the Textpattern source code without having
to download a Subversion client.

Figure 2-46. Textpattern development site

INSTALLING TEXTPATTERN

57

2

12. http://trac.edgewall.org/

8326CH02.qxd 4/23/07 12:57 PM Page 57

The timeline feature of the development site, shown in Figure 2-47, enables you to search
for source code changes based on the date they were checked in to the Subversion repos-
itory.

Figure 2-47. The Trac timeline detailing Subversion changes

Clicking a specific revision number displays a color-coded view of the changes introduced
by that revision, as shown in Figure 2-48.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

58

8326CH02.qxd 4/23/07 12:57 PM Page 58

Figure 2-48. The detailed code differences in a changeset

The source browser on the site enables you to view the full source code of all Textpattern
files. You start out at the top level of the Subversion repository, shown in Figure 2-49, and
then have the ability to drill down through the various releases and development branches
used by the Textpattern development team.

Figure 2-49. The Textpattern source code browser

INSTALLING TEXTPATTERN

59

2

8326CH02.qxd 4/23/07 12:57 PM Page 59

Finally, if you want to keep up to date with changes to the Textpattern source code with-
out having to constantly check back for changes, you can subscribe to the Textpattern
Timeline Rich Site Summary (RSS) feed located at http://dev.textpattern.com/
timeline. Each time a code change is checked into the Subversion repository, you’re noti-
fied in your feed reader. This feed is a great way for plugin developers to stay on top of the
latest bug fixes and features that are added to the Textpattern core.

Pulling code from Subversion

If you want to stay in the loop with all the latest changes made to Textpattern, you should
definitely take a look at Subversion, which enables you to sync up with the cutting-edge
development changes as they are submitted by the core developers. First take a look at
how to do this on Windows; then on the Mac.

On a PC
If you’re a Windows user, the easiest way to grab code from Subversion is by using the
TortoiseSVN client. You can find the latest version available for download at tortoisesvn.
net/downloads.

Once you install the TortoiseSVN client, you can easily check out all Textpattern source
code—including the 4.0 development branch, crockery branch, and all releases. The fol-
lowing steps guide you through the process of checking out all Textpattern source code:

1. Create a new directory on your local drive. For this example, I created a directory
called c:\textpattern.

2. Right-click the directory name in Windows Explorer and select the SVN Checkout
option from the menu, as shown in Figure 2-50.

Figure 2-50. Windows context menu with
Subversion options

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

60

8326CH02.qxd 4/23/07 12:57 PM Page 60

3. When presented with the Checkout dialog box, enter the URL of the Textpattern
Subversion repository, http://svn.textpattern.com, and click OK (see Figure 2-51).

Figure 2-51. TortoiseSVN Checkout dialog box

4. Once all the files are downloaded, you’re left with a directory structure as shown in
Figure 2-52.

You can now use the SVN export command to copy the files for the version you want to
use into a new directory. Check the TortoiseSVN instructions for more detailed instruc-
tions on using the client.

Figure 2-52. Textpattern source code checked
out from the Subversion repository

INSTALLING TEXTPATTERN

61

2

8326CH02.qxd 4/23/07 12:57 PM Page 61

Subversion on OS X

If you are the pioneering type or if you just want to know what is coming around the bend,
you can grab the latest nightly builds of Textpattern to keep abreast of any changes being
made to the system. While official releases might not be done every week, the core devel-
opment team is always hard at work making incremental improvements to Textpattern.
Conveniently, they store all their collective updates to Textpattern in one central location
(http://svn.textpattern.com/) and use a system called Subversion (SVN) to sort out all
the changes. This allows the developers to check in code, without fear of overwriting each
other’s work.

To keep tabs on Textpattern development code as it evolves, you’ll use a localized Mac
installation of Subversion. While in-depth explanation of SVN is beyond the scope of this
book, more information can be found at its official site (http://subversion.tigris.
org/). Additionally, there is a book dedicated entirely to SVN: Version Control with
Subversion (O’Reilly, 2004), which can be read in its entirety in online or PDF form
(http://svnbook.red-bean.com/). For the purposes of this chapter, I paraphrase
Wikipedia:13

The Subversion file system is described as “three dimensional.” Most representations of a
directory tree are two dimensional, but SVN adds a third dimension: revisions. Each revi-
sion in Subversion has its own root, which is used to access contents at that revision. Files
are stored as links to the most recent change, thus a Subversion repository is quite com-
pact. The storage space used is equivalent to the changes made, not the number of revi-
sions.

Installing Subversion
The first thing you need to do is install Subversion. At the time of this writing, the current
version is 1.4.3, and the best place to get a streamlined installer is from Martin Ott’s web-
site, in which he graciously provides binary OS X builds free to the community. Go to
www.codingmonkeys.de/mbo/ and look for the link to download the Zip file named
Subversion-1.4.3.pkg.zip or the latest stable version if a newer one is available. Once it
is downloaded, double-click the *.dmg file and it extracts the *.pkg file. Double-click that
file and it begins the installation process. Follow the instructions and allow it to install SVN
in the default location: /usr/bin/local/. That does it—now Subversion is installed on
your computer.

Installing svnX
Now that Subversion is installed, you need to install a graphical user interface (GUI) to
help you accomplish your tasks. While some geeks swear by the command line, which is all
well and good, you can save some time and effort by using the open-source program
called svnX, which is provided free by the French web agency La Chose Interactive. Type
this address in your browser: www.lachoseinteractive.net/en/community/subversion/
svnx/download/. Click the blue icon, and the svnX_0.9.9.dmg file (or newer version)
begins downloading. Once it finishes, double-click the file on your desktop to initiate the
installation process.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

62

13. http://en.wikipedia.org/wiki/Subversion_(software)

8326CH02.qxd 4/23/07 12:57 PM Page 62

Now, run svnX by going to /Applications/ and double-clicking the blue svnX icon, which
opens two windows: Repositories and Working Copies. For the purposes of retrieving the
latest Textpattern builds, you use only the Repositories window; feel free to close the other
window. In the Repositories window, click the plus icon (+) and enter this in the text field
for Path: http://svn.textpattern.com/. Type something like TXP DEV—Remote for
Name. It really doesn’t matter. Leave the User and Pass blank. You should now see the
newly created repository listed under Name/URL. Double-click the entry and you see a
screen that looks like Figure 2-53.

Figure 2-53. Subversion GUI on OS X

Several blue folders display on the bottom half of this screen. Click the development folder
and you see the current versions that are undergoing changes. You can poke around here
and find the latest builds. Once you find something that interests you, click the green
arrow at the top of the screen labeled svn export. It prompts you to choose a location to
which you want to download the files. I recommend creating a separate folder in the
/User/username/Sites/ directory to house the latest TXP builds, which keeps you from

INSTALLING TEXTPATTERN

63

2

8326CH02.qxd 4/23/07 12:57 PM Page 63

overwriting any local files. Additionally, I highly recommend backing up your localized
installation of Textpattern before overwriting it with any of the SVN builds. Further instruc-
tion will be added on SVN in later chapters of this book as you dive into creating your own
TXP plugins. For now, move on to becoming familiar with the intricacies of the Textpattern
admin interface.

Summary
Congratulations! You have successfully installed Textpattern. As a Windows user, in this
chapter you learned how to use XAMPP on Windows to set up a localhost environment
and you also learned how to use TortoiseSVN to get the latest development builds of
Textpattern. If you are a Mac user, you learned how to use MAMP for local hosting and are
now familiar with using svnX to retrieve the latest builds of Textpattern via the SVN server.
The experience you gained using phpMyAdmin has translated directly into creating and
managing databases on a live site because this tool is widely installed on many hosting
platforms. Using that knowledge, you successfully created and configured your remote site
as well.

The next chapter takes a closer look at using the Admin section of Textpattern, and you’ll
begin to customize the system to meet your needs. Now that the grunt work of installing
everything is complete, you can begin to go deeper into actually using Textpattern. If you
need to, take a little break and then come back quickly for Chapter 3. Don’t touch that
dial, folks, because you’re just getting started!

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

64

8326CH02.qxd 4/23/07 12:57 PM Page 64

8326CH02.qxd 4/23/07 12:57 PM Page 65

PART TWO THE TEXTPATTERN
INTERFACE

8326CH03.qxd 4/11/07 11:33 AM Page 66

3 SITE ADMINISTRATION

8326CH03.qxd 4/11/07 11:33 AM Page 67

Now that you have completed Chapter 2, you should have a working installation of
Textpattern set up on either your local computer or a live server. This chapter looks at all
aspects of the Administration area of Textpattern, briefly covering what each part does so
that you will have a reference point for later chapters that will go into further detail. In
particular, you will find that enhancing functionality with plugins will become an essential
part of building out any Textpattern site.

Logging in
Notice that when you are not logged in, there really is not much to the Textpattern inter-
face—not even the version number. There is only one tab, labeled View Site, with a Login
to Textpattern area below, as shown in Figure 3-1. This is for good reason because you
certainly would not want nonapproved users to see more of the content management
capabilities than they are entitled to. Go ahead and enter the username and password that
you specified during the setup process. If you are using your own private computer, you
might want to click the checkbox labeled Remain logged in with this browser, which will save
you from having to retype your details every time you want to use Textpattern. If you are
logging in from a public setting such as an Internet cafe, it is wise to leave the checkbox
empty so that those using the computer after you do not have full administrative access to
your website.

Figure 3-1. Textpattern login screen

Pre-flight check
After logging in, the first thing you should do is check the Diagnostics tab in the Admin
area to make sure that there were not any hiccups in the installation process. When all is
as it should be, there will be a message displayed in green text that reads All checks passed!

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

68

8326CH03.qxd 4/11/07 11:33 AM Page 68

Assuming that everything went according to plan, you should see a screen that looks
like Figure 3-2. This Diagnostics section lists all the information about your hosting
configuration. You can choose the level of detail that is reported—either High or Low—by
using the drop-down menu below the text area. If you are having difficulties or making
errors aside from those covered here, please post a detailed description of the problem on
the Textpattern forum.

Figure 3-2. Pre-flight check passed

If you see the message as depicted in Figure 3-3 (. . . \textpattern\setup\ still exists), you
need to make sure that you delete this directory. If someone knew that you were running
Textpattern, they could type in the address www.example.com/textpattern/setup/. While
this is not necessarily a huge security hole, it is something that can be easily avoided, so
you should make sure to take the necessary precautions and delete this directory after
your setup is complete.

Two other errors you might see are Apache module mod_rewrite is not installed and Clean
URL test failed. The combination of these two errors probably means that your host does
not have mod_rewrite enabled on the Apache servers. If you are running Textpattern in a
local testing environment, refer to Chapter 2 for instructions on how to enable this setting.
If you are seeing this warning on a live host, you might want to check with your server’s
administrator to see whether this is something that they can accommodate. Don’t worry if
this is not available with your hosting package because you can still run Textpattern; you
just have to use “messy” URLs instead (this is covered a bit later in this chapter).

S ITE ADMINISTRATION

69

3

8326CH03.qxd 4/11/07 11:33 AM Page 69

Figure 3-3. Pre-flight check warnings

Preferences
What would life be without options? You can have regular or decaf coffee, with or without
cream and sugar, or with or without artificial creamer and sweetener. There are full-
service or self-service gas stations, each offering different types of gasoline in a variety of
octane ratings. Shopping for toothpaste can be a chore because after you pick your brand,
you have to narrow down the field of options: original flavor, cool mint, cinnamon, tartar
control, or extra whitening? Even orange juice comes with pulp or no pulp, hand-squeezed
or processed, and with or without added calcium! You get the picture. I could go on and
on, but the point is that people like to have choices, and everyone has preferences. So it is
only logical that the next thing you need to do is specify your preferences. Use the
Preferences tab, which is located right next to the Diagnostics tab. Basic preferences,
shown in Figure 3-4, enable you to control a number of aspects that relate to your site.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

70

8326CH03.qxd 4/11/07 11:33 AM Page 70

Figure 3-4. Basic preferences

When you click the Preferences tab, you should see three buttons labeled Basic, Advanced,
and Language with the Basic button selected, indicating that you are in that part of the
Preferences area. Resist the urge to click either of the other two buttons (you will visit
them in a few minutes). For now, focus your attention on the list of choices underneath
the heading labeled Publish.

Publish

Following is a listing of each choice in the Publish section and what exactly each one does:

Site name: This setting is just what it says—the name of your site. By default, it
appears in the title area of your browser. It also goes out via Atom and Rich Site
Summary (RSS) feeds and is visible to your subscribers, so it should be set accu-
rately. Within your pages, the site name can be displayed in one of two ways. By
using the TXP tag <txp:sitename />, only the site name will be displayed. By using
<txp:page_title />, though, you can output the name of your site, along with the
current article title. Further use of these tags will be covered in later chapters, as
well as in the tag manual.

Site URL: This setting is also pretty straightforward; it needs to be set to the area
from which you want to run Textpattern. The fact that you are using Textpattern
means that it is set up correctly. Just make sure that you leave it as is, so that the
links within your site all work well together. If you are developing your site on a
localhost with the intent of porting it over to a live server, you will need to change
this setting when you make the switch.

S ITE ADMINISTRATION

71

3

8326CH03.qxd 4/11/07 11:33 AM Page 71

Site slogan: For whatever reason, this setting is something that people often for-
get to change (perhaps because they do not want to have a witty one-liner describ-
ing their site). Like Site name, Site slogan is also broadcast via the Atom and RSS
feeds, and it doubles as a description of your site for feed aggregator services. I
cannot help but chuckle when I subscribe to the Atom or RSS feed of a respected
site that uses Textpattern, only to see it labeled My pithy slogan in my feed reader.
Be sure not to make that mistake. Also, note that it can be quite a bit longer than
the actual text field might indicate. Personally, I use it solely as a description for
syndicated content and do not actually make use of it anywhere on my site. By
default, it is displayed using the TXP tag <txp:site_slogan />.

Time Zone: Set the time zone according to the region of the world in which you
live. GMT refers to Greenwich Mean Time, which is the time zone for Greenwich,
England, and is the location from which all other time zones are measured. If you
are unsure how far an offset your time zone is from GMT, you can just check it on
your local computer. If you are using Windows, double-click the time in the lower-
right corner of your screen, which displays the Date and Time Properties window
(Time Zone is the second tab). You should see something that looks like Figure 3-5.
If you are on a Mac, click the time in the upper-right corner of your screen and
choose Open Date & Time from the drop-down menu. Click the Time Zone button,
and you should see a window like Figure 3-6.

DST enabled: This setting enables you to specify whether or not daylight savings is
in effect for your area. Not all time zones observe daylight savings time, so it might
not be relevant for your particular location.

Date format: This setting is the date format used when you are not on an individ-
ual article’s page. As a general rule of thumb, it can be thought of as being used
when there is more than one article displayed. I tend to keep this option the
same as Archive date format for consistency, but that is just a matter of personal
preference.

Figure 3-5. Time Zone on Windows

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

72

8326CH03.qxd 4/11/07 11:33 AM Page 72

Figure 3-6. Time Zone on Mac OS X

Archive date format: This setting enables you to choose how you want the date
displayed on your individual articles. It defaults to the number of hours or days
it has been since an article was posted. Personally, I do not care for this format
because it is not very informative. The person reading the date cannot easily ascer-
tain at a glance when the article was published. Not only that, but the more time
that goes by, the longer the string of digits grows. If your layout is designed to
support a certain amount of numbers in a pseudo-calendar of sorts, this can be
problematic. It is really just a matter of personal preference, though—you can pick
whichever format you like.

Permanent link mode: By default, this setting is set to ?=messy since that is
the universally compatible mode. In this mode, your articles will look like this:
www.example.com/index.php?id=101, and your sections will look like this:
www.example.com/index.php?s=article. As you can see, it is not the prettiest
solution—hence the name messy. However, the URL is still quite manageable and is
still fairly short, even in this mode.

Settings other than messy require Apache’s mod_rewrite module to be enabled. If
you see a green All checks passed message on the Diagnostics tab, you can choose
any of the other methods available. I tend to use the /section/title format
because it most closely resembles a real directory structure (meaning that if some-
one were to cut off /title in the URL, there would still be a /section available
because of the way Textpattern handles sections and articles). The other URL
schemes are simply for readability and to keep people from writing similarly titled
articles that conflict with each other.

S ITE ADMINISTRATION

73

3

8326CH03.qxd 4/11/07 11:33 AM Page 73

For instance, with the /id/title structure someone could write an article entitled
“My Summer Vacation” and then a year later write another article with the same
title. The ID of the article would keep each entry unique, like so: www.example.com/
101/my-summer-vacation and www.example.com/201/my-summer-vacation. If this
were done with /section/title, both URLs would be identical: www.example.com/
article/my-summer-vacation. The /year/month/day/title format is helpful for
showing the user exactly when the article was written (for example, www.
example.com/2006/12/25/merry-christmas). The drawback of using this type of
format is that it does not resemble a true directory structure. So if users were to
navigate to www.example.com/2006/, they would not find all the articles for 2006;
they would be redirected to a 404 page. If this is something your site requires,
plugins are available that can emulate this structure.

Logging: No, this setting does not have to do with deforestation. By default, it is
set to All hits, but this can have a detrimental effect on your site’s performance
because it will write visitor info to the MySQL database for each person who comes
to your site. While it might be interesting to see what ISP people are using, such
data is not entirely relevant or applicable and quickly gets boring. The most logical
choice is Referrers only because it lets you know which sites are linking to you and
which of those links people are clicking to get to your site. This still involves
actively writing information to the database, though, and the referrer logs are
somewhat limiting in the amount of data they present. One popular alternative is
to set logging to None and instead use something like Google Analytics, which is
not only far more robust but also free. This is a more feasible solution because
Google deals with tracking the hits instead of your database. For high-traffic sites,
overhead can be reduced significantly by just leaving logging off altogether.

Use Textile: Textile (text-style, get it?) is part of what makes Textpattern so great. It
is the text formatting minilanguage/syntax that converts pseudocode into usable
XHTML. For instance, if you want to make something bold, all you need to type is
this text is bold; likewise, to make something italicized, you can type _this
text is italicized_ (which generates the XHTML output this text is
bold and this text is italicized, respectively). Note that
even when using Textile, real XHTML can still be intermixed. Any single line breaks
add
 to break the line, and double line breaks create paragraphs using the
<p>...</p> code structure. This line break handling is included in the Use Textile
and Convert linebreaks modes. If you choose Convert linebreaks, it will do just that,
while not responding to other text formatting syntax; whereas if you choose Leave
text untouched, no autoformatting is applied. This can be helpful for articles in
which you want to feature snippets of code and you need the code to remain unal-
tered. This can be handled on a per-article basis, though, so it is best to just leave
Use Textile enabled by default. A more in-depth look at full Textile formatting will
come later in Chapter 4.

Accept Comments? This setting is pretty self-explanatory. It simply enables you to
choose whether or not you want to accept feedback from users in the form of
comments on your articles. If your Textpattern-driven site will not have any blog-
ging element to it, feel free to pick No for this option. This choice will cause the
bottom portion of the preferences page under Comments to be hidden, as those
options are not relevant without comments enabled.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

74

8326CH03.qxd 4/11/07 11:33 AM Page 74

Production Status: This setting has three modes: Debugging, Testing, and Live. By
default, the production status is set to Testing, but you will want to change it to Live
before making your site public. Debugging is a great way to help you as a developer
to identify problems in templates, plugins, and raw PHP code. Testing is used
primarily for setting up a site in preparation for making it live. In both modes, the
runtime is displayed in the code, which is the amount of time taken to build the
page. They also show the number of MySQL queries executed and the estimated
memory usage. In Debugging mode, all TXP tags encountered while building the
page are also visible in the XHTML source code. While this is all very fascinating, it
is not at all relevant to your site’s users, so be sure to flip the switch to Live before
showing it off to the world.

Comments

Assuming that you left the Accept comments? option set to Yes, you can now move on to
the next set of criteria. Most of these settings are pretty easy to figure out, but some are a
little more cryptic. Here is the list of the options that are available:

Moderate comments? This option changes whether or not comments appear on
your site immediately after they are submitted, or if they will be held in a queue for
you to approve (or disapprove) of manually. By default, it is set to Yes, although
most users will expect instant feedback when entering a comment, so you might
consider setting it to No. You do not forfeit your right to moderate comments by
doing so. As the site owner, you have veto power and can always go back through
and prune comments you do not want.

On by default? You might have this question: “Wait, this is just the same option as
Accept Comments, is it not?” If so, you are right to wonder. The settings are very
similar, but here is the difference: with Accept Comments set to No there are no
comments, ever; with Accept Comments set to Yes, but On by default? set to No, you
still have the option of enabling comments on a per-article basis (which can be
helpful in some situations). For instance, if you are writing an editorial column for
a newspaper site, you are usually simply expressing your opinion and are not solic-
iting feedback. However, from time to time you might want to request write-in
responses from your readers, in which case you could enable comments for that
one article.

Present comments as a numbered list? By default, all your comments will be
contained within an ordered list. Semantically speaking, this is probably the
most accurate way to display comments because the list items are enumerated
sequentially. If this option is set to No, each comment will be wrapped in a
<div>...</div> instead of a list item. While this is not quite as semantically rich, it
can make for easier styling if for some reason you do not want to style
<ol class="comments">.... By using the wraptag and breaktag attributes,
you can, of course, present your comments with any tags you want. These types of
attributes will be covered later in Chapter 5.

S ITE ADMINISTRATION

75

3

8326CH03.qxd 4/11/07 11:33 AM Page 75

Mail comments to author? With this option enabled, the author of the article
receives an email every time someone makes a new comment on your site. This
process can be a great way to keep on top of things, but can be quite tedious to
keep up with. Another way to handle new comments is to simply set one of your
browser’s home page tabs to your Comments area in Textpattern. This still lets you
see the most recent comments and keeps your inbox comparatively less crowded:
www.example.com/textpattern/index.php?event=discuss.

Disallow user images? By default, this option enables user images because the
answer to the question Disallow user images? is No. Once you get past the fact that
it is a double negative, it actually is quite a handy feature. If it is set to Yes, all user
images will be stripped out, and those leaving comments can only add text, not
graphics.

Default invite: This is the default phrasing used on your site, which lets people
know that commenting is enabled. You can specify this invitational wording glob-
ally here and can override it later on a per-article basis.

Comments date format: This option is just like the aforementioned Date format
and Archive date format options, except that it applies to the date on which people
leave comments. This information can be output along with names and feedback,
letting others know how current the discussion is.

Comments mode: This setting has only two choices: popup or nopopup. By default,
it is set to nopopup, which is probably for the best. The other option is dependent
on JavaScript to create a new miniwindow. Some users have popup blocking
enabled in their browsers, whereas others might be viewing your site on a mobile
device or using some other technology that does not support JavaScript. It is rec-
ommended that you leave this option set at nopopup.

Disabled after: This option enables you to specify a preset amount of time for
which comments will be accepted after you post your article. If set to never, people
can comment indefinitely. Alternatively, you can have the commenting period
autoexpire in increments of one week up until six weeks after the article was first
posted. This setting can be overridden on a per-article basis if you need to disable
comments sooner. You might override a particular article in which commenting
gets out of hand or if you are simply making a short announcement that does not
require any user feedback.

Automatically append comments to articles? The default is Yes, which causes the
comment form and any comments to appear after the body of your article. If it is
set to No, you can still make use of comments, but will have to hard-code the com-
ment form to appear in your template using the <txp:comments /> tag. This can be
useful for instances in which you want the comment form somewhere other than
immediately following your article in the source code (it could be used to make the
form appear on the other side of the page, for instance). This topic will be covered
later when we look at templating.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

76

8326CH03.qxd 4/11/07 11:33 AM Page 76

Advanced Preferences
Now you will visit the buttons that we skipped over before. When you click the first but-
ton, Advanced, you are taken to the Advanced Preferences page. That button is replaced by
a link labeled Basic, which leads back to the screen you were just looking at. What you
should now see resembles Figure 3-7. When I think of preferences, I tend to visualize sim-
ple choices such as regular or decaf. When I hear “advanced” preferences, I think of more
miniscule nuances such as espresso or French roast. However, the Advanced Preferences in
Textpattern are quite essential for the functioning of your site and should not be over-
looked or considered to be something that only connoisseurs care about. So, let’s run
down the list and see what these Advanced Preferences are all about.

Figure 3-7. Advanced Preferences

S ITE ADMINISTRATION

77

3

8326CH03.qxd 4/11/07 11:33 AM Page 77

Admin

In this portion of Advanced Preferences, you can change the details of your site to match
your server configuration. For the most part, you need to change these settings only if you
are switching between hosting providers, and the absolute path to your site is different on
the server. Even so, have a look at what each of the criteria does.

How many articles should be included in feeds? This option controls how many
recent articles go out as XML to your Atom and RSS subscribers. The default is five,
but you can set it to whatever you like—it really depends on the frequency with
which you post.

Send "Last-Modified" header? If this setting is set to Yes, when someone visits
your site, Textpattern asks the visitor’s browser if your site has already been visited
by reading its HTTP If-Modified-Since header. It then compares this with the date
when your site was last modified. If the visitor has been to your site fairly recently,
and nothing has changed since then, Textpattern tells the browser to use the ver-
sion of the site that is in its cache by sending the Last-Modified header response.
This saves having to load your site from the database every time and cuts down on
bandwidth and server overhead.

Image directory: This is the directory to which images will be uploaded from the
Images area (under the Content tab) of Textpattern. The default is images, which
refers to www.example.com/images/, but you can change it to whatever you like.
Unless you have a specific reason for the change, it can be left as the default. Be
sure to have full read and write permissions set by browsing your site structure via
FTP, right-clicking the directory, and typing in the number 777 in the text field. It
should be labeled something like Numerical value or Octal, depending on your FTP
program.

Maximum file size of uploads (in bytes): This option enables you to set a limit on
the file size that authors are allowed to upload. The default is 2000000 bytes, which
is approximately 2 megabytes. If that size is too small for the type of files you antic-
ipate uploading, feel free to change it to whatever suits your needs. Be aware that
the server’s PHP configuration setting has the final authority for maximum file size
on uploads. If you need capacity greater than what your server allows, you might
need to contact your hosting company. Alternatively, you can simply FTP the file to
the server, and “claim” it via Textpattern in the Files area by choosing an Existing file
from the drop-down menu and then clicking Create.

Temporary directory path: The Temporary directory is where files, images, and plug-
ins are written to while they are waiting to be sorted into the correct place. If you
view this directory via FTP at www.example.com/textpattern/tmp/, it is empty
because nothing is stored there permanently. Still, it is an important part of how
TXP functions, so be sure to have full read and write permissions set to 777, just as
with the images directory.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

78

8326CH03.qxd 4/11/07 11:33 AM Page 78

File directory path: As with the images directory, the file directory exists as
a place to store files uploaded via the Textpattern interface. It should also be set
to full read and write permissions 777, just like the tmp directory and images
directory.

Use ISO-8859-1 encoding in e-mails sent (default is UTF-8)? This option has to
do with the type of character encoding with which emails are sent. The Latin-1
(ISO-8859-1) encoding used to be the standard, but has since been retired because
it pertained mainly to a Western context. Unicode Transformation Format (UTF-8),
on the other hand, has encoding for many more characters and thus can handle
more languages. It has all the capabilities of ISO-8859-1 and then some. So unless
you have a specific need to use ISO-8859-1, leave this option set to No so that you
are using the newer UTF-8 standard.

Plugin cache directory path: This directory is used for holding plugins while they
are still in development. Unless you are writing a plugin that specifically requires a
plugin cache directory to be created, you can just leave this field blank. If you do
need to create a directory, log in via FTP, make a directory, and then point to it
here in the Admin area.

Comments

Following is a listing of each choice in the Comments section and what exactly each one
does:

Require user’s name? This option enables you to control whether or not the Name
field is required when leaving a comment. For the most part, you should always
have at least a name and a message so that there is someone to attribute the com-
ment to. Unless you are building a site with some sort of anonymous commenting
system, it is best to leave this set as a requirement for posting.

Require user’s e-mail address? There seems to be some debate among bloggers
whether a user’s email address should be required to post comments. Some feel
that it helps lend more accountability because people have to give you their
address before they can post anything. However, it has been my experience that if
they do not want to divulge their email addresses, users will just use a fake one. For
my own site, I have it available as an optional field because people will often post
web-related questions and might want an email response from me. For those who
do not wish to divulge their personal information, it affords them the luxury of a
little more anonymity.

S ITE ADMINISTRATION

79

3

8326CH03.qxd 4/11/07 11:33 AM Page 79

Style

Unless you are one of the few people on the planet who is a fan of black, size 16, Times
New Roman font, you will probably be interested in adding a little style to your website.
Depending on your preference of how you like to edit Cascading Style Sheets (CSS), this is
where you make that choice.

Use raw editing mode by default? When this option is set to Yes, you simply see a
full view of your CSS files by default, enabling you to scroll through and edit them
as you would in any HTML textarea. If it is set to No, you see your CSS in
Textpattern’s unique editor, which provides a tabular layout view of your style
selectors and values. It is quite an interesting approach to managing CSS, one that
is not seen in very many coding programs. As such, feelings tend to be polarized.
Some people love it, while others opt to use their trusty hand-coding program—
cutting and pasting between there and the TXP interface. Alternatively, you can just
upload your static CSS files via FTP and skip the style manager altogether.

Custom fields

Custom fields are a powerful and versatile part of Textpattern and are what make it so easy
to repurpose for different uses or add additional functionality to what already exists.
Custom fields will be covered at length in later chapters. For now, all you need to know is
that they will open up many doors of opportunity as you learn to develop more robust
and fully featured websites.

Figure 3-8 shows the Links and Publish options available.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

80

8326CH03.qxd 4/11/07 11:33 AM Page 80

Figure 3-8. Links and Publish settings

S ITE ADMINISTRATION

81

3

8326CH03.qxd 4/11/07 11:33 AM Page 81

Links

Textile link descriptions by default? If you want your Links section to be run
through a lightweight version of Textile, choose Yes here. Straight quotation marks
and apostrophes will be changed into their curly counterparts for better readabil-
ity and typographical appeal. Also, freestanding single dashes (-) will be turned into
the HTML encoded equivalent –, which is a slightly longer variant used in
typesetting. It is up to you, but I recommend turning Textile on for as much as pos-
sible, as it really helps spruce up otherwise standard-looking text and properly
encodes HTML character entities such as &.

Publish

Permalink title-like-this (default is TitleLikeThis)? This setting applies only if clean
URLs are enabled. Along the same lines as the previous setting, this option auto-
matically grabs the text in your article title and converts it to a URL. By changing
this setting, the aforementioned article would have this URL as its address:
www.example.com/article/WhatIDidLastSummer. As you can see, it is not as easily
readable.

Use DNS? If you are making use of visitor logs and want Textpattern to make
an attempt to convert IP addresses into human-readable addresses such as
my-isp.example.com, switch this setting to Yes. Note that this option takes slightly
more processing overhead, so if you notice that it starts to slow things down, you
might want to switch it off. If that is a factor, though, you will probably save more
system resources on your server if you just turn off logging altogether.

Use admin-side plugins? Like the previous plugins option, this setting can just be
left on unless you find that you are experiencing problems using the Textpattern
admin interface, in which case it might help you troubleshoot. One excellent admin
plugin is the database manager by Rob Sable, one of this book’s authors. It enables
you to make one-click backups of your entire site and also enables advanced users
to run SQL queries against the database directly. For such plugins, this option must
be enabled.

Apply rel="nofollow" to commentators’ website URL? A favorite method of
spammers is to go on unsuspecting blogs and leave comments littered with links to
other sites. They do this for two reasons. First, it is a desperate attempt to get
people to click these links, find their products or services, and purchase them.
Second, these links unfortunately serve as silent leeches on your site, using your
site’s search engine ranking to boost the relevancy ranking of their own sites. While
search engines vary, one constant is that they all attribute more importance to sites
with more incoming links. The rel="nofollow" attribute / value essentially tells
search engines to ignore those links. Enabling this setting can help curb unwanted
spam.

Use e-mail address to construct feed ids (default is site URL)? Much like the
Include e-mail in Atom feeds option, this setting gives people another way to gather
information about you. Since your site is already publicly known, anyway, leave this
option set to No. The Atom and RSS feeds will then use your domain name to
uniquely identify your website.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

82

8326CH03.qxd 4/11/07 11:33 AM Page 82

Maximum URL length (in characters): This option is a security feature to help pro-
tect your site against buffer overflow attacks, by which someone can submit an
exceedingly long URL to your site and cause a memory access exception. The
object of such an attack is an attempt to crash your site. The default is set at 200
characters, after which Textpattern ignores the rest of the text in the URL.

Spam blacklists (comma-separated): To help prevent comment spam, there are
sites devoted to compiling the Internet Protocol (IP) address of offenders. You can
think of this option as a "neighborhood watch" of sorts, reporting the digital
license plate numbers of known offenders. When your website receives a spam
comment and you mark it as such, the IP address is sent to the blacklists you spec-
ify. When someone else receives a comment originating from this address, it is
flagged as spam, saving the next person the hassle. This also works reflexively, so
the diligent spam reporting of others can serve to benefit you. By default, the only
address entered is sbl.spamhaus.org. You can find a longer list of maintained
blacklists at DMOZ, which is short for DirectoryMOZilla, since the Mozilla
Foundation originally maintained this list (www.directory.mozilla.org). This list
now lives on at http://dmoz.org/Computers/Internet/Abuse/Spam/Blacklists/.

Allow PHP in articles? If you want to use PHP from within your actual articles, this
option enables you to do it. It is not recommended, however, because most of the
programming logic should be kept at a higher level and probably should not make
its way down into individual articles. That said, if you have a specific need for it, go
right ahead, but it is usually safe to leave this setting off.

Allow PHP in pages? If this option is enabled, you can make use of raw PHP in
your page templates and forms by typing it within the <txp:php>...</txp:php>
tags. By restricting the usage to the TXP tags, it helps keep things more secure. That
being said, if you know PHP already, you can do just about anything you want.
Simply use Textpattern’s opening and closing PHP tags instead.

Allow raw PHP? This option is available only to enable older sites that still make
use of raw <?php ... ?> tags to continue to function properly. As mentioned
before, there is nothing to be gained by using these tags instead of the ones that
TXP provides. So unless you are upgrading from an older version of Textpattern
and have already made use of raw PHP, start by doing things the right way and
leave this setting off.

Ping textpattern.com? If you want to phone home to the mother ship and let
Textpattern.com know that your site is up and running, you can set this option to
send a ping every time your site is updated. This pinging helps to let the
Textpattern development team know that you appreciate and are using their
software. Additionally, it allows for updates to be displayed in real time à la
Blogger.com if the TXP team decides to do so.

As of Textpattern version 4.0.4, the <?php ... ?> tags should no longer be used
because of security vulnerabilities in which lesser-privileged site contributors could
potentially compromise the Textpattern installation.

SITE ADMINISTRATION

83

3

8326CH03.qxd 4/11/07 11:33 AM Page 83

Ping ping-o-matic.com? If you want to alert search engines and subscription serv-
ices that your site has been updated, make sure to set this option to Yes. If you
want your site to gather attention, go ahead and flip the switch to broadcast mode
here. On the other hand, if you want to keep your site relatively private, simply
choose the other option.

Show comment count in feeds? If this setting is on, the number of comments will
be displayed in your Atom and RSS feeds as part of the title: Article name here [17].

Use plugins? For the most part, you can leave this setting on all the time. The only
instance in which you might want to switch it off is if you are having unfamiliar
errors or problems with your site. By setting this option to No you might be able to
determine whether indeed it was a plugin causing the problem or whether there is
something wrong with Textpattern itself.

Attach titles to permalinks? This option is a handy way to let Textpattern create
URLs for you based on your article title. It applies only if clean URLs are enabled,
and you have chosen a Permanent link mode of /section/id/title, /id/title, or
/year/month/day/title. If you choose /title or /section/title, titles are
always attached to permalinks. For instance, an article entitled “What I did last
summer” would have a URL that looks like this: www.example.com/article/
what-i-did-last-summer.

Allow form override? If this option is enabled, you can choose a custom format on
a per-article basis. Say you have a hybrid photo blog along with a regular one and
want to be able to switch things up without actually putting blog articles into a dif-
ferent site section. This option provides the perfect way to do that because you can
have it default to one format, but then can use form override for days when you
are feeling particularly contrary or just want to post some sort of unique content.

Articles use excerpts? If this setting is used, there is a box for an excerpt below
the main article field when writing articles from the Content area. This option is
intended to be used for a summary paragraph about your article, but it can really
be used for just about anything. I have seen sites use it for pull quotes or for dif-
ferent portions of a page, such as an image spread. If you are lazy like me, there are
a few plugins out there that autogenerate pseudoexcerpts based on the first num-
ber of words you choose. In that case, you can turn excerpts off and that textarea
will not take up space in your article writing area.

Logs expire after how many days? This option sets the number of days that your
referrer logs remain in the Textpattern database. Note that if you do not check
your logs regularly, they will continue to back up and add to the database size,
albeit at a very gradual pace. This setting pertains to how many days the logs
remain saved before they are expunged. If you do not plan to check your logs very
often, you should adjust this setting accordingly.

Never display e-mail address? If you do make user email a required field to post
or even if you simply provide it as an option, it is common courtesy to hide users’
addresses from public view. Unless you are running a site called Spam “ ” Us, which
enables poor schmucks to sign up in order to see who can get the most mis-
spellings of Viagra emailed to them per day, be a gracious host and do not display
user email addresses. Oddly enough, this setting is a double negative, so answering
No actually means you will display them. So, make sure it is set to Yes, or else
people might just stop commenting on your site altogether.

R

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

84

8326CH03.qxd 4/11/07 11:33 AM Page 84

New comment means site updated? If you have the Send “Last-Modified” header
enabled, this option causes the cache to be rebuilt each time there is a comment
added, ensuring that as users leave comments, they see them appear on the site
(assuming that they are not moderated first). Also, this setting updates your recent
comments if you are outputting a list somewhere on your site—in your sidebar for
instance.

Include e-mail in Atom feeds? This has always seemed like a pointless option
because broadcasting your email address seems like a great way to get spammed.
However, since Atom feeds are capable of including an author’s email address, this
setting lets you dig your own grave in that regard. I recommend that you leave your
email out of the Atom feed and simply provide a contact page from your actual
site. If you like getting messages about herbal remedies and bogus stock IPOs, be
my guest and leave it set to Yes.

Syndicate article excerpt (default is article body)? This option enables you to
choose between sending out excerpts of your articles or sending the full text via
Atom and RSS. It is up to you which one you want to use. There seems to be an
ongoing debate about whether excerpts help to get people interested enough in
an article to visit the actual site. Really, this is a factor only if you are displaying pay-
ing advertisements on your site and fear that providing full articles will somehow
hinder your efforts to generate revenue. While I will not take sides on this issue, I
will say that you should write about what interests you, not only to make money.

Prevent widowed words in article titles? Basically, this option keeps article titles
from line-breaking with only a single word occupying the second line. Textpattern
checks for the last word in a title; if there is more than one word in the title, it adds
a nonbreaking space between the last and second-to-last words. When a web
browser sees the nonbreaking space character encoding , it treats the two
adjacent words as a single chunk, thus causing the text to break to the next line
with two words instead of one. A single lonely word is called a widow in typeset-
ting for print (and is a faux pas when creating a page). Textpattern can prevent wid-
ows for sites that operate as web magazines, or the feature can just be left off.

Manage languages
The other subsection of the Preferences area is Language, as pictured in Figure 3-9, which
closely resembles the language choices you were given when first installing Textpattern. If
you need to add additional language support for a possibly multilingual site, this area is
where you do that. The left column lists all your language choices, while the right column
lists the installation links for the corresponding languages. Also of note is the date below
each link, letting you know when each language file was last updated. You can compare
this date with the date listed for the version of the language file you are currently using. If
you so desire, you can then install the newer version to keep up to date. For the most part,
though, if you are using English, these files do not change very often.

S ITE ADMINISTRATION

85

3

8326CH03.qxd 4/11/07 11:33 AM Page 85

Figure 3-9. Manage languages

At the bottom of the page is a link that says Install From File (experts only), which enables
you to upload your own language file via FTP and overwrite the existing settings in the
database with your newly uploaded version. While this might seem a little intimidating, if
you download one of the language files from rpc.textpattern.com/lang/ and open it in
a text editor, you will see that it is pretty straightforward. I like to edit my language file to
change the error messages for my comment form, as well as change the button phrasing
from Submit to Publish. This is really just a matter of preference and pickiness, however.
The standard language file should be just fine for most users.

Users
Now that we have covered the myriad of preferences that Textpattern caters to, let us
move on to the Users tab, which is shown in Figure 3-10. This area is comparatively simple,
offering a few basic choices. It enables you to change your password and email yourself a

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

86

8326CH03.qxd 4/11/07 11:33 AM Page 86

copy. Also, it enables you to create new users and assign them various privileges: Publisher,
Managing Editor, Copy Editor, Staff Writer, Freelancer, Designer, and None. I am not sure in
which instance you would want to actually create a new user and yet assign no privileges.
None is available in case you need to revoke user privileges while not entirely disabling the
account. Hopefully, this will not be necessary, but in the case of a news magazine site, if
someone makes an off-the-cuff-remark in an editorial, it might need to be dealt with.

S ITE ADMINISTRATION

87

3

Figure 3-10. User administration

At any rate, here are the levels of privileges for each potential role:

Publisher: A Publisher can create, edit, or remove articles, as well as manage links
and user comments. A Publisher can take an article out of live circulation by chang-
ing its status, enabling it to be edited before being republished. A Publisher can
edit site preferences and has access to the entirety of the site design, as well as all
sections and categories. A Publisher can also create and delete users, as well as
change any user’s privileges, including those of other Publishers.

Managing Editor: A Managing Editor can do everything a Publisher can do except
create, delete, or edit privileges for other users.

Copy Editor: A Copy Editor can make changes to any article, link, or user-submitted
comment, and can also make changes to page templates and TXP forms.

Staff Writer: Staff Writers can create, edit, publish, and delete only articles that they
have created; have the ability to upload accompanying images; but cannot affect
the work of other authors.

8326CH03.qxd 4/11/07 11:33 AM Page 87

Freelancer: Freelancers can create and edit articles for which they are the author,
and can change those articles from draft to pending status. These articles do
not appear live on the site until approved by someone with Managing Editor or
Publisher status.

Designer: A Designer has access to the site’s XHTML page templates, TXP forms, as
well as CSS. However, a Designer does not have the ability to contribute to site con-
tent, so the Designer role is restricted to editing the appearance of the site.

The user account names mimic the structure of a newspaper or magazine editorial office.
If your site requires different nomenclature, a bit of Textpattern hacking enables you to
change both the user account names (for instance, Publisher to Overlord) and their per-
mission levels. However, this is fairly technical, and requires editing the txp_admin.php and
admin_config.php files, so it is beyond the scope of this book. For full details, consult the
TextBook article entitled “Modifying User Account Roles and Privileges.” 1

Visitor Logs
Now that you learned how to create and manage new users, it is time to move on to Visitor
Logs, which should look something like Figure 3-11. This area is pretty self-explanatory. In
the far-left column is the date and time of the visit, followed by the name of the ISP/host,
and then the URL of the page hit by the visitor. This, along with the Referrer, will probably
be of most interest to you, because it shows which pages people are visiting, and, almost
more importantly, who is linking to your website.

At the top center is a search box that enables you to filter through your logs to find some-
thing in particular. You can search by IP, host, page, referrer, method, and status. At the
bottom left of the page is a checkbox that enables you to see more detail about your vis-
itors, such as their IP addresses. In the far right column and at the bottom right, you can
select entries to delete. This is helpful when cleaning up logs you have already viewed
instead of waiting for them to expire after the preset number of days specified in
Advanced Preferences.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

88

1. http://textpattern.net/wiki/index.php?title=Modifying_User_Account_Roles_and_Privileges

8326CH03.qxd 4/11/07 11:33 AM Page 88

Figure 3-11. Referral logs

Plugins
When you first go to this section of the Admin interface, it looks quite sparse (see Figure
3-12) simply because Textpattern does not come with any plugins preinstalled. As your site
develops, however, this area will probably grow with the plugins you choose to give addi-
tional functionality to your website. To install a plugin, copy the text from within the plu-
gin file that you have downloaded, paste it into the Install plugin textarea, and then click
Upload.

S ITE ADMINISTRATION

89

3

8326CH03.qxd 4/11/07 11:33 AM Page 89

Figure 3-12. Plugins area

You now see a screen with a preview of that plugin’s PHP code, as well as the accompany-
ing help file and usage instructions, as shown in Figure 3-13. After you look things over,
scroll down to the bottom of the page and click Install.

Figure 3-13. Plugin preview

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

90

8326CH03.qxd 4/11/07 11:33 AM Page 90

After you install your plugin (or perhaps several plugins), this section of the Admin area
starts to look like Figure 3-14. You see that there are typically four links pertaining to each
plugin. The first is the author’s name with a link to the website. This can be a good way to
check on updates to plugins by periodically visiting the author’s site, or perhaps subscrib-
ing to the Atom or RSS feeds. The next link is in the column labeled Active. You need to
actually make each plugin officially active after installation, so make sure that you click on
all the No words to change them to Yes. Likewise, when uninstalling a plugin, make sure to
deactivate it before just jettisoning it into the void.

Figure 3-14. Plugin listing

We won’t go into more detail here because Chapter 13 covers plugins in much more
depth.

Import
This section does just what it says and not a whole lot more, as you can see in Figure 3-15.
If you already have a site running using a different content management system (CMS),
and it shares the same database host, all you need to do is enter the relevant info. There
is a drop-down menu labeled Import from with a few selections: Movable Type (file), Movable
Type (SQL DB), Blogger, B2, and WordPress. For the sake of this example, I have set up
WordPress on localhost alongside my Textpattern installation. If you are migrating from
another system, check with the corresponding vendor about how to export your database.

S ITE ADMINISTRATION

91

3

8326CH03.qxd 4/11/07 11:33 AM Page 91

Figure 3-15. Importing from WordPress

The second drop-down menu enables you to pick the Section to import into. This is some-
what limiting, considering that you could be importing from a multisectioned CMS.
However, you can always go back through and reassign each article to the correct TXP sec-
tion. The third drop-down menu enables you to set the Default article status. If you are
doing this on a live server, you should probably have it set to Draft, so your new articles
don’t go out to the world until you have looked them over. If you are doing this on a local-
host, it really does not matter. You can also set the Default comments invite in the text field
provided.

Finally, make sure to fill out the database details for your other CMS. It is easy to make the
mistake of filling in your Textpattern database data, in which case you are telling
Textpattern to import itself. After you finish, fill in any applicable table prefixes if you are
importing from WordPress or the Weblog ID if you are importing from a Movable Type
database. Then hold your breath and click Continue. If everything went according to plan,
you should see something like Figure 3-16. Note that if you have a large amount of articles
stored in the other CMS, the database import can take awhile. For my example, I just
imported a brand new WordPress installation on my own computer, so it was instanta-
neous.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

92

8326CH03.qxd 4/11/07 11:33 AM Page 92

Figure 3-16. Import is complete

Summary
Well, that about covers it for the Admin area of Textpattern. Hopefully, you have not yet
started using this book as a doorstop because the upcoming chapters will be much more
interesting. Configuration is the least glamorous part of any web development–related
topic, but it is a necessary part of the process. Now that you have solidified the ground-
work for Textpattern, it is time to move on to the Content area and start putting virtual pen
to paper to share your thoughts with the world. It will then be time to delve into the
Presentation area, in which you learn the tools that will transform this default and nonde-
script website into a thing of unique elegance and beauty. Okay, so maybe we cannot
promise beauty, but at the very least you will be more comfortable changing the way your
site looks, and it will be a reflection of your creativity.

S ITE ADMINISTRATION

93

3

8326CH03.qxd 4/11/07 11:33 AM Page 93

8326CH04.qxd 4/11/07 11:40 AM Page 94

4 BASIC CONTENT MANIPULATION

8326CH04.qxd 4/11/07 11:40 AM Page 95

Now that you have made it through the arduous process of setting up Textpattern (TXP),
and have fully tweaked and customized the Admin preferences, it is high time to introduce
you to the section in which you will find yourself spending the bulk of your time. This is, of
course, the Content area. This chapter covers the basics: creating article categories, making
subcategories, and learning the fundamentals of writing in Textile. This chapter also intro-
duces aspects of the authoring interface: form override, custom fields, keywords, article
image, and URL title customization. (Form override and custom fields will be covered in
depth later in Chapter 13 because these two topics open up further doors to extended
functionality.)

Write
When you first log in or whenever you navigate to www.example.com/textpattern/, if the
Remain logged in with this browser checkbox has been selected, you arrive at a page with a
blank text input field and two textareas. It will look something like the screen shown in
Figure 4-1. This area is where you will probably spend the most time managing and
creating new content. It is aptly named Write, denoted by the selected tab in the second-
ary row of navigation. Note that on the left there are three links that, when clicked,
expand to show more options: Textile Help, Advanced Options, and Recent Articles.

Figure 4-1. Write tab

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

96

8326CH04.qxd 4/11/07 11:40 AM Page 96

Textile Help

The first link, Textile Help, gives you a cheat sheet with many of the common instances for
which you might need to use it. There is also a link labeled More, which takes you to a
more robust demo1 that looks like the screen depicted in Figure 4-2. Textile was initially
created by the original author of Textpattern (Dean Allen), but is now hosted and main-
tained by Alex Sheils, who is one of the developers on the core TXP team. The syntax that
is listed within the Write interface will be referred to as Basic Textile for the purposes of
this chapter, and the syntax that is featured exclusively at the Textile demo site will be
referred to as Advanced Textile. Note that throughout this list you might see (class)
included in the syntax, whereas it might or might not be present in the Textpattern inter-
face. This is simply to make you aware of the fact that a class name can be added at these
points. Also be aware that whenever you see (class), that element can also accept (#id),
{style}, or [language] (see the section later in this chapter titled “Advanced Textile”).

Figure 4-2. Textile generator demo

BASIC CONTENT MANIPULATION

97

4

1. http://textile.thresholdstate.com

8326CH04.qxd 4/11/07 11:40 AM Page 97

Basic Textile
According to Dean Allen, the creator of Textpattern, Textile is "a simple syntax for nudging
plain text into structurally sound and stylistically rich web content." It is basically a short-
hand method of turning regular thoughts and ideas into valid XHTML without having to
type angular brackets all the time. In this section, we will examine what makes this possi-
ble and hopefully demystify the art of self-publishing on the Web.

header: hn(class): This option refers to XHTML headers, which number 1 through 6 and
are used to denote semantic structure and importance within a document. For instance,
the main heading on a page might be a level 1 heading written like this: <h1>This is a
level 1 heading</h1>, with subsequent instances of <h2>...</h2>, <h3>...</h3>, and so
on. The italicized n in the Textpattern interface simply refers to the number that you need
to type to invoke the corresponding header. The nice thing about Textile is that you simply
write hn. at the beginning of the line, and Textile closes it for you automatically when
there is a double line break. Doing so enables you to write headers with single line breaks
in them, which are converted to
 automatically. For instance, if you want to write a
level 3 heading, you simply type this:

Textile input:

h3(class_name). This is my level 3 heading

XHTML output:

<h3 class="class_name">This is my level 3 heading</h3>

Note that you must begin writing your string of text flush against the side of the textarea
for it to take effect. If there is a space before the h, your literal XHTML output is simply
h3. This is my level 3 heading. That is, of course, not what you are shooting for.

Sometimes you might want to write raw XHTML, which you can do with Textile. Let’s say
you want to place a horizontal rule, often referred to as a horizontal line. In XHTML, it
is simply written as <hr /> (note the self-closing trailing slash; without it, your code is
valid HTML but invalid XHTML). Since there is no Textile equivalent, you can just write it
as is. However, be aware that if you write it flush against the left side of the textarea, the
following is sent to the browser: <p><hr /></p>. Oops—that is not what you intended!
Do you see what happened there? Textile was expecting regular text and since it did not
see any of the predefined syntax such as h3, it just wrapped the <hr /> in paragraph
tags <p>...</p> as if it were regular written copy.

You need not disable Textile entirely for such simple things; just add a space before-
hand, and the horizontal rule will be output as expected without any containing tags.
Alternatively, you can also write notextile. before text that you want to remain un-
affected, which can help to more visibly mark the spot where you disabled Textile. Doing
so causes it to kick in at the next double line break. If you use notextile., you have to
manually restart Textile using the p. syntax.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

98

8326CH04.qxd 4/11/07 11:40 AM Page 98

Blockquote: bq(class): This option should be used only when you are actually quoting a
source. It is not meant to be used as a pull quote, as is often seen in print media. (A pull
quote is a chunk of text that has been visually emphasized to help capture the essence of
an article.) A blockquote is used when quoting an external source that spans several lines.
Often, blockquote HTML tags have been abused in the past, being misappropriated simply
to indent chunks of text with no regard to the underlying semantic meaning. This negli-
gent usage has even been propagated by expensive web development software such as
Dreamweaver, regarded by many to be one of the industry standards for coding. Similar to
headings, to make use of a blockquote simply type bq. with no preceding spaces, and the
text after it will be enclosed within <blockquote>...</blockquote> tags. What is nice
about the way Textile handles blockquotes is that it automatically adds <p>...</p> tags
round the text as well, which is required for valid XHTML 1.0 Strict and higher. Some con-
tent management system (CMS) choices, such as ExpressionEngine, lack this by default.
Following is an example of a blockquote being created in Textile, followed by the XHTML
output it generates:

Textile input:

bq(class_name). Four score and seven years ago, our fathers brought å

forth
on this continent a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

XHTML output:

<blockquote class="class_name">
<p>
Four score and seven years ago, our fathers brought forth

on this continent a new nation, conceived in liberty, and

dedicated to the proposition that all men are created equal.

</p>
<blockquote>

Numeric list: #(class): This option is pretty self-explanatory. To create a numbered list, or
more specifically an ordered list, just put a number sign (sometimes referred to as a
pound sign) at the beginning of each new line. Doing this creates an ordered numerical
list. The following is an example of the text that is created. Note that doing single line
breaks to make a
 within a list tends not to work too well with Textile. So if that is
your desired effect, amid other standard writing that you want to be affected by Textile
simply put a space before your and type out an ordered list as you would in normal
XHTML.

If you write your blockquote Textile syntax with two periods instead of one
(bq..), your blockquote can span several paragraphs. You just need to make
sure that you toggle this behavior off by manually adding p. to indicate the
paragraph at which you want the blockquoting to stop.

BASIC CONTENT MANIPULATION

99

4

8326CH04.qxd 4/11/07 11:40 AM Page 99

Textile input:

#(class_name) Ordered list item one
Ordered list item two
Ordered list item three

XHTML output:

<ol class="class_name">
Ordered list item one
Ordered list item two
Ordered list item three

Bulleted list: *: To create a bulleted list, more commonly referred to as an unordered list,
you simply put an asterisk at the beginning of each new line (Ctrl+8 on Windows/
Command+8 on Mac). This works exactly like ordered lists, except instead of a number
there will simply be a generic bullet point. You can, of course, style these bullets differ-
ently with Cascading Style Sheets (CSS) or get rid of them entirely and substitute a
background image instead. Such tricks are beyond the scope of this chapter, however. For
a good book on CSS, check out CSS Mastery by Andy Budd (ISBN: 1590596145).2 Following
is an example of the syntax for unordered lists in Textile:

Textile input:

*(class_name) Unordered list item one
* Unordered list item two
* Unordered list item three

XHTML output:

<ul class="class_name">
Unordered list item one
Unordered list item two
Unordered list item three

(class)emphasis: Emphasis is an element of XHTML that is often confused and inter-
changed with italics. Emphasis is officially written with ... tags, whereas italics
are written with <i>...</i> tags. While there are some isolated instances in which
italics might be preferable, the majority of the web community treats them as being dep-
recated (although they are still technically allowable in Strict document types). The reason
why emphasis is preferred over italics is that it better supports multilingual applicability as
well as having more semantic meaning to assistive screen reader technology. For instance,
consider a font with Japanese characters. Unlike our westernized Latin character set
used in a language such as English, there might not actually be an italicized subset for
this particular font. Therefore, adding italics is a moot point. Visually, adding tags
might not have any effect, either, but that is not the point. Italics tags exist for one

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

100

2. www.cssmastery.com

8326CH04.qxd 4/11/07 11:40 AM Page 100

purpose only: to make things italicized. By adding emphasis, we can style the Japanese writ-
ing in a different color, larger size, and so on. Screen readers give more audible emphasis to
the characters as well; italics typically receive no such distinction. That being said, writing
_(class_name)emphasized word here_ will yield <em class="class_name">emphasized word
here.

(class)strong: Much like emphasis, ... grew out of a departure
from purely visual HTML markup. Strong can be thought of as the XHTML version of the
outmoded, but not altogether deprecated, bold tag. Just like italics, the bold tag
... existed for one reason only: to make text bold. Strong, on the other hand
carries with it a certain element of semantic value as well as not being restricted to
a certain font weight. Granted, many browsers render strong the same as bold and
emphasis the same as italics, but it is the subtle nuance that makes all the difference. In
Textile, *(class_name)strong text here* yields <strong class="class_name">strong text
here when it is output to the browser as XHTML.

??(class)citation??: Citation is a little-used XHTML tag (probably because of being misun-
derstood or perhaps visually mistaken for emphasis or italics). It is a great way to show a
citation of a particular source. For instance, in a list of works cited using a particular for-
mat, as required by the Modern Language Association3 or the American Psychological
Association,4 you might want to semantically indicate a source citation. In such cases,
<cite>...</cite> could be wrapped around the name of a book or semiregular publica-
tion. The fact that it tends to be rendered in italics by most browsers is irrelevant
because unlike the italics tag it has semantic meaning. Its similarity in default visual style
is entirely coincidental. That being said, you can always style away the italics with CSS
and instead apply whatever visual standard is necessary for a particular genre of bibliog-
raphy. In Textile, you can write ??(class_name)Really Good Book??, and it outputs <cite
class="class_name">Really Good Book</cite> to the browser.

-deleted text- and +inserted text+: I mention these two together since they are often
seen used in tandem. Deleted text appears with a line through it in the browser by default.
It is the XHTML replacement for the now outdated and deprecated <strike>...</strike>
strikethrough tags. Just as is the case with strong versus bold and emphasis versus italics,
the ... tags are now the preferred method for showing text that has been
deleted. This begs the following question: Why would I want to show text that is deleted?
I am glad you asked. It is handy in situations in which there was an item for sale, but it is
now out of stock. Instead of having the text mysteriously disappear and risk alienating and
confusing returning shoppers, it is more helpful to show them the option that was previ-
ously up for grabs. Insertion is shown in XHTML by <ins>...</ins> and because of its
default visual styling in most browsers, it is thought of as having replaced the <u>...</u>
tags, which was purely for the purpose of underlining text. Because of the prevalence of
underlining to denote a hyperlink, however, <ins> should not be used unless the accom-
panying CSS of text-decoration: none; is also applied, lest the inserted text look
like a link and confuse the user. One possible semantic use of insertion is within
<noscript>...</noscript> tags, the contents of which are displayed only when JavaScript
is unavailable. In this case, the text really is inserted into the document under extenuating

BASIC CONTENT MANIPULATION

101

4

3. www.mla.org
4. www.apa.org

8326CH04.qxd 4/11/07 11:40 AM Page 101

circumstances. Another use is to correct something that has been crossed-out via use of
the deletion tags. A store that is in the process of lowering its prices might use such a
combo.

^superscript^ and ~subscript~: These two do exactly what their names imply. Superscript
elevates text, whereas subscript pushes it down. Superscript ^{...} would be
necessary to write Einstein’s Theory of Relativity (E = mc2) in XHTML, for which the expo-
nent of 2 is raised above the baseline and also appears in a smaller font size. Likewise, the
chemical representation of sulfuric acid, H2SO4, is an example of subscript _{...},
in which the numbers hang slightly below the baseline and are written in a smaller font
size. By and large, these tags are not used very often, but can help to add clarification to
text when they are used correctly, not just for ASCII art. The preceding examples would be
written like this: E = mc ^2^ and H ~2~ SO ~4~. It was for the purpose of scientific learning
that the Internet was created in the first place, so although these tags are purely presenta-
tional, they are so for a reason: to convey mathematical and chemical principles.
Therefore, use them as such, or not at all.

"linktext":url: This is the syntax for adding hyperlinks to your writing, something that I
anticipate you will want to do quite frequently. linktext is the text that you want to be
visible and clickable. The URL portion is then written after the colon. It is important to
realize that just writing a link beginning with www does not suffice. If that were the case,
your link would point to www.yourwebsite.com/www.example.com/. Therefore, be sure to
structure your text like this: "Click Here":http://www.example.com/ and it will yield
Click Here. You should, of course, provide
more meaningful and informative text than simply Click Here, but I think you understand
what I mean.

!(class)imageurl(alt text)!:linkurl: This works in much the same way as the previous exam-
ple, in that the URL that follows the colon is a link. The imageurl is simply the path to the
image you want to display. Note that if you want this image to also show up in your
RSS/Atom feed, you should probably provide the full path, also called an absolute path,
instead of just the localized path, or relative path, to the image. However, if you forget to
use absolute paths, Textpattern automatically attempts to fix the URL in the feed. Also,
note that if you enclose a word within parentheses before the image URL, it is used as a
class name, whereas text within parentheses after the URL is used as alternate text. For
instance, this is how you link directly to an image on your server to ensure that it appears
to your subscribers and your site visitors:

!(class_name)http://www.yourwebsite.com/images/34.gif å

(Alternate Text Here)!:http://www.example.com/

That yields this XHTML on the client side:

 å

<img src="http://www.yourwebsite.com/images/34.gif" class= å

"class_name" alt="Alternate Text Here" />

Some feed reading services automatically correct relative URLs to images, so if you are
relying on it to keep people visiting your site to see your imagery, you might be wasting

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

102

8326CH04.qxd 4/11/07 11:40 AM Page 102

your time. As a general rule of thumb, if you do not want people accessing information, do
not put it online. You, of course, do not have to specify an external link every time, but
should specify alt text for accessibility purposes. To simply display an image but not have
a link around it, just write your Textile code like this: !http://www.yourwebsite.com/images/
34.gif(Alternate Text Here)!.

Advanced Textile
Beyond what is listed in the collapsible area in the Write interface, Textile also supports a
variety of other text commands. Since some of them are quite robust and are not likely to
be used on a regular basis, as well as the fact that Textile is constantly being improved
upon with each release, many of the more-advanced features can be found by clicking
More beneath the Textile Help area. This will take you to a demonstration area that you can
use to see how the syntax translates into XHTML. Much of the basic syntax covered in the
Textpattern interface is repeated there, so we will now focus on advanced syntax.

%(class)span%: Occasionally you might want to visually distinguish some snippet of text
within the flow of regular text, yet not necessarily add any implicit semantic meaning to it. For
such instances, authors sometimes add a valueless wrapper around their text, which is called
a span. By default, span tags have no visual distinction or special styling, so they can be styled
however the designer prefers. In Textile, writing text like this %(class_name)Text enclosed
by a span% yields this XHTML output: Text enclosed by a
span.

@code@: This syntax is great for adding snippets of code inline with your body text to
denote something that the user should take note of, such as a snippet of XHTML, CSS, or
JavaScript. It should be noted that it does not create a block of code as seen on some web-
sites. Wrapping text in code brackets also keeps XHTML within them from being parsed
and instead converts it into the character-encoded equivalents. Writing @<p>Paragraph
Code</p>@ in Textile yields this XHTML output: <code><p>Paragraph Code</
p></code>. Onscreen, it appears to the user like this: <p>Paragraph Code</p>.

fnn. Footnote and See foo[1]: This pair can be used together to create a numbered indi-
cator that corresponds with a numbered footnote. The footnote itself needn’t be at the
bottom of your document, but it is recommended that you place it there so it will function
as intended. It is nice that Textile has the intuition to keep the numerical pairing between
the indicator and the footnote, as seen here. The lengthy alphanumeric link and the
matching ID name might look a bit perplexing. The reason for this is that they adhered to
the principle of globally unique identifier (GUID). If there were several articles on a page,
each with corresponding footnotes, id="fn1" would quickly be duplicated. In order to
function, there most only ever be one single ID name per page. By having a random
alphanumeric pairing, they are always unique.

Textile input:

See foo[1].

fn1. Foo.

BASIC CONTENT MANIPULATION

103

4

8326CH04.qxd 4/11/07 11:40 AM Page 103

XHTML output:

<p>See foo<sup class="footnote"> å

1</sup>.</p>

<p id="fn198522619454032998635b" class="footnote">¹ Foo.</p>

p(class). Paragraph: You might be wondering why it is possible to specify a paragraph
when Textile converts all double line breaks to paragraphs anyway. But sometimes you
might want to add a particular class to a paragraph. For instance, say you want to have a
paragraph that contains a notice to the user that you want them to pay attention to. For
that, you simply write p(class_name). Notice this paragraph, and it then outputs this XHTML:
<p class="class_name">Notice this paragraph</p>. Additionally, you need to manually
specify a paragraph if you are resuming regular formatting following any of the .. Textile
modifiers, such as the notextile.. syntax mentioned previously.

bc. Block code: This option works much the same way as a blockquote, but also partially
as @code@ does because it creates a block of code by using the preformatted tags of
<pre>...</pre> with code tags contained immediately inside to add the monospace
aspects and to keep the code from being parsed. With only <pre>, the contained is still
parsed, and you can basically just format things the way you do when writing poetry. With
both sets of tags, you can write lengthy chunks of code for highly technical examples.
Check out the following example:

Textile input:

bc(html). <ul id="navigation">

Home

About Us

Our Services

Company History

Contact Us

XHTML output:

<pre class="html"><code><ul id="navigation">

Home

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

104

8326CH04.qxd 4/11/07 11:40 AM Page 104

About Us

Our Services

Company History

Contact Us

</code></pre>

Visible to user:

<ul id="navigation">

Home

About Us

Our Services

Company History

Contact Us

pre(class). Pre-formatted: As mentioned in the previous example, using <pre>...</pre>
without code tags can help format text for which the spacing and indentation is important.
Without it, extra spaces and tabs are simply dropped, and text is formatted as a standard
paragraph. For instance, check out the following example: a snippet of a poem by Rudyard
Kipling, simply titled “If.” Note the lack of converted line breaks. Since this text is con-
tained within a preformatted block, the actual line breaks are retained instead of being
converted into their XHTML equivalent of
. One nice feature is that Textile still finds

Just like blockquote, block code also can span several paragraphs. Simply type
bc.. with two periods instead of one, and you can keep your code continuing
as long as you need to. Likewise, to toggle this behavior off and return to nor-
mal text, simply type p. to manually create a paragraph.

BASIC CONTENT MANIPULATION

105

4

8326CH04.qxd 4/11/07 11:40 AM Page 105

straight quotation marks and converts them to their curly XHTML encoded counterparts
for easier reading. This differs from the bc. usage because they would stay regular straight
quotes for code purposes.

Textile input:

pre(poetry). If you can talk with crowds and keep your virtue,
Or walk with kings - nor lose the common touch,

If neither foes nor loving friends can hurt you;
If all men count with you, but none too much,

If you can fill the unforgiving minute
With sixty seconds' worth of distance run,

Yours is the Earth and everything that's in it,
And - which is more - you'll be a Man, my son!

XHTML output:

<pre class="poetry">If you can talk with crowds and keep your virtue,
Or walk with kings - nor lose the common touch,

If neither foes nor loving friends can hurt you;
If all men count with you, but none too much,

If you can fill the unforgiving minute
With sixty seconds' worth of distance run,

Yours is the Earth and everything that's in it,
And - which is more - you'll be a Man, my son!

</pre>

Visible to user:

If you can talk with crowds and keep your virtue,
Or walk with kings - nor lose the common touch,

If neither foes nor loving friends can hurt you;
If all men count with you, but none too much,

If you can fill the unforgiving minute
With sixty seconds’ worth of distance run,

Yours is the Earth and everything that’s in it,
And – which is more – you’ll be a Man, my son!

Attributes: These four aspects of Textile can be used to modify the tags with which you
pair them. In many of the preceding examples, you saw (class) added to some of the code
examples. Likewise, (#id) can be added in the same way. For instance, h2(#welcome).
Welcome to my website! outputs this XHTML: <h2 id="welcome">Welcome to my
website!</h2>. The language attribute in Textile works much the same way: simply sub-
stitute [language] for (class) in any of the previous examples. For instance, the
Textile code %[Spanish]¿Hablas Español?% converts to ¿Hablas
Español?. The fourth attribute, {style}, requires that you have working knowl-
edge of CSS. If you want to override one particular aspect of your text, you can do so.
Note that all of these attributes can be used together. It should be noted that using inline
styles is discouraged because it mixes presentation with content.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

106

8326CH04.qxd 4/11/07 11:40 AM Page 106

Textile input:

%{font-family: serif;}(hymnal)[Spanish]Tú eres luz, tú eres mi sol%

XHTML output:

 å

Tú eres luz, tú eres mi sol

Alignment: By using these aspects of Textile, you can change the alignment of text.
However, they use inline styles, which should probably be avoided anyway. For the sake of
completeness, they are covered here, but I really recommend that you not use them at all
in actual practice because they mix presentation with the actual content of your writing.
Instead, use predefined class names. That being said, here is the corresponding Textile and
XHTML:

Textile input:

p>. This text is aligned to the right

p<. This text is aligned to the left

p=. This text is centered

p<>. This text is justified at either end

XHTML output:

<p style="text-align:right;">This text is aligned to the right</p>

<p style="text-align:left;">This text is aligned to the left</p>

<p style="text-align:center;">This text is centered</p>

<p style="text-align:justify;">This text is justified at either end</p>

Tables: Much like the alignment syntax, I do not recommend that you actually build your
tables using Textile. While it is possible to do so, the input lacks the capability to do fully
semantic markup and does not take accessibility for screen readers into account. That
being said, here is an example for completeness, as well as a contrasting full XHTML table
that can be written without Textile:

Textile input:

_. Name	_. Age
Jane Doe	26
John Doe	27

BASIC CONTENT MANIPULATION

107

4

8326CH04.qxd 4/11/07 11:40 AM Page 107

XHTML output:

<table>
<tr>
<th>Name</th>
<th>Age</th>

</tr>
<tr>
<td>Jane Doe</td>
<td>26</td>

</tr>
<tr>
<td>John Doe</td>
<td>27</td>

</tr>
</table>

Better XHTML table (note that tfoot precedes tbody per the World Wide Web Consortium
(W3C) recommendation5):

<table cellspacing="0" class="data">
<caption>Names and Ages</caption>
<colgroup>
<col class="name" />
<col class="age" />

</colgroup>
<thead>
<tr>
<th scope="col">
Name

</th>
<th scope="col">
Age

</th>
</tr>

</thead>
<tfoot>
<tr>
<td colspan="2">
This would be a summary of the table.

</td>
</tr>

</tfoot>
<tbody>
<tr>
<td>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

108

5. www.w3.org/TR/html4/struct/tables.html#edef-TFOOT

8326CH04.qxd 4/11/07 11:40 AM Page 108

Jane Doe
</td>
<td>
26

</td>
</tr>
<tr>
<td>
John Doe

</td>
<td>
27

</td>
</tr>

</tbody>
</table>

Acronyms: When writing, you often use using lingo that is commonly known to you but
perhaps new to your readers. Likewise, after first explaining what something means, you
might have an abbreviation or acronym for it to avoid having to type it out each time. For
instance, instead of the words United States of America or U.S.A., we often simply write
USA. For accessibility purposes, as well as just to add text clarification, this can be written
in Textile as USA(United States of America). In so doing, only the letters USA are visible,
but there is a hidden title attribute contained within acronym tags, like so: <acronym
title="United States of America">USA</acronym>. In most major browsers, when
hovering over an acronym the title attribute displays as a tooltip.

Raw XHTML: From time to time, you will include snippets of XHTML that you want to be
unaffected by Textile. Such situations differ from usages of <pre> or <code> because you
still want the XHTML to have its normal parsing by the browser, but without being first
rerouted through Textile. Such instances might include a data table to show statistics in an
article, while still desiring Textile for the actual written copy. Such a table might require a
certain level of robustness that Textile table formatting cannot provide. If you were to
hand-code your own table, you would of course want the XHTML code to be unaffected,
lest Textile add in
 and <p>...</p> where it was not appropriate. To do that, you
can denote where Textile will be disabled using this syntax:

The <acronym>...</acronym> tags will supposedly be replaced by <abbr>...</abbr>
sometime in the future, since they enable broader application. All acronyms are abbre-
viations, but not all abbreviations are acronyms. For instance, the word etcetera can be
abbreviated as etc. but not ETC. However, Internet Explorer 6 for Windows fails to prop-
erly display the title attribute of abbr, so the acronym is still widely used instead
because of better support in older browsers.

BASIC CONTENT MANIPULATION

109

4

8326CH04.qxd 4/11/07 11:40 AM Page 109

Disable Textile inline:

==no This text is unaffected ==

Disable Textile for a block of text:

notextile. Textile will be disabled until a double linebreak

Disable Textile until restarted manually (via p., hn., etc.):

notextile.. Textile will be disabled until restarted manually

Advanced Options

Here I will run through the advanced options available under the Advanced Options link.

Article/Excerpt Markup
This collapsible portion enables you to specify how you will handle article markup on a
per-article basis. There are three main choices: Use Textile, Convert linebreaks, and Leave
text untouched. If you left things set as the default in the Admin area, Use Textile is the
default choice selected. This means that all the syntax in the Textile Help cheat sheet, as
well as the more robust capabilities of Alex’s demo, are applicable as you write your
article. If you choose Convert linebreaks, each new line creates either a new paragraph or
an XHTML break tag, depending on whether there are double or single line breaks. The
rest of the text is untouched. If you do not want any modification to be done and want to
type raw XHTML code instead, simply choose Leave text untouched. This can be helpful for
articles that pertain to code, which should not be parsed by Textile, and in which line
breaks need to be handled manually.

Keywords
This option can be used to uniquely identify an article instead of relying on a generic set
of overarching keywords for an entire site. In the days of yesteryear, keywords were used
by search engines to determine the relevance of a site to a set of search terms. However,
because keywords are so easy to fake by entering irrelevant words to return false positives
for search results, many search engine companies are now relegating them to unimportant
status. Still, using keywords can be a good way to give your articles useful descriptors, and
some plugins might make use of keywords to retrieve similar articles. Just do not expect
miraculous results if you are attempting to do Search Engine Optimization (SEO).
Keywords can also be used in conjunction with the <txp:article_custom /> tag, as will be
seen in Chapter 13.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

110

8326CH04.qxd 4/11/07 11:40 AM Page 110

Article image
This field enables you to directly associate one particular image with each article. This is
not to say that you cannot also insert other images via the previously covered Textile syn-
tax or simply raw XHTML, but this option enables you to output the image apart from the
article text itself, if need be, by using the <txp:article_image /> tag. If you were running
a photo blog or a gallery website in which you did a writeup about each image, this would
be an ideal way to do it. Use of this tag will be covered more in the next chapter.

URL-only title
By default, this article derives from the title of your article and typically reflects the title by
making all the words lowercase and inserting dashes between them (unless you changed
this default setting in the Advanced Preferences in the Admin area, in which case the title
would be camelCased). Either way, if you for some reason want to change the URL on a
per-article basis, this is the field that you use to do so.

Recent Articles

This link does just what it says: it expands and shows a list of recently modified articles.
Note that this does not necessarily mean they were the most recently written. For
instance, if you wrote an article a year ago, but have just updated it within the past week,
it shows up in this list, yet remains chronologically on your site as it was originally. This
option can be good for posting updates to an article without necessarily wanting to draw
attention to the fact that it has been updated. It can also be handy for fixing typos.

Categories
In the Categories area you can keep track of the various pieces of content by arranging
them into categories. The four main category designations are Article Categories, Link
Categories, Image Categories, and File Categories. By default, the Categories area looks like
the screen in Figure 4-3. By using the text fields above each list, you can add additional
categories. You can also click categories that already exist and make modifications to
them. Either way, you will find yourself on a screen that resembles Figure 4-4. Note the
drop-down list labeled Parent, which enables you to choose an article category from which
the currently selected one will be a descendant. While this does not have any direct
impact in the current version of Textpattern, 4.0.4, it might be incorporated as a fuller fea-
ture in later versions. Some plugins make use of the parent/child relationship between
categories in order to provide means of user “tagging” or slitting up items for sale into
related areas for ecommerce.

BASIC CONTENT MANIPULATION

111

4

8326CH04.qxd 4/11/07 11:40 AM Page 111

Figure 4-3. Categories tab

Figure 4-4. Add/edit category

Articles
As you write your articles, they are automatically built into a sortable list that can be
accessed from the Articles tab. Since the default installation of Textpattern includes only
one article, I have taken a screenshot of the Articles tab from my own site. As you can see
in Figure 4-5, the layout is conducive to sorting and editing your articles. If you click the
column headers, you can sort articles by any of the following criteria: ID#, Posted (date),
Title, Section, Status, or Author. Likewise, if the article you are looking for is not visible on
that page, you can search by these same criteria using the text input at the top center of
the page.

You can also modify aspects of the article by clicking a checkbox or multiple checkboxes,
and then choosing one of the following options from the drop-down menu in the lower-
right corner: Change section, Change Category1, Change Category2, Change status, Change

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

112

8326CH04.qxd 4/11/07 11:40 AM Page 112

comments, Change author, or Delete. You can click the article’s ID# or title; you will be
taken to the Write tab with that article open, in which you can make updates or changes.
Note that if you do so, there is a link labeled View next to the title’s text input field. This is
a convenient way to go directly to that article’s URL to see the article in the context of
your site. The < Prev and Next > buttons enable you to browse through in forward or
reverse chronological order, without having to return to the Articles overview each time.

Figure 4-5. Articles tab

Images
When you click the Images tab, by default you see a screen listing only one image: the hor-
izontal divider graphic that is included out of the box. Feel free to delete it unless you
have some purpose planned for it. As your site grows, the Images listings will become
more numerous, just as your Articles listings will. Figure 4-6 shows my own site’s Images
listing. You can probably tell that this is not a photo-driven website because of the relative
sparseness with which I have chosen to use my images. I have not opted to upload or
create a thumbnail, nor have I bothered to categorize them. That being said, there’s noth-
ing to stop you from treating your graphics with more care and attention.

In the Images section you can browse for images to upload, which enables you to navigate
the contents of your hard drive to find what you need. You can also search the images that

BASIC CONTENT MANIPULATION

113

4

8326CH04.qxd 4/11/07 11:40 AM Page 113

are already uploaded by these criteria: ID#, Name, Category, and Author. In the Tags cate-
gory, if you click Textile, Textpattern, or XHTML a pop-up window appears to help you build
the appropriate tag or TXP syntax to display the image. If you click any of the image
names, you are taken to that image’s details page (see Figure 4-7 for an example).

On this page, you can replace the image, which enables you to keep the image’s ID the
same so that articles that reference it do not need to be changed. You can also upload a
thumbnail or have Textpattern create a thumbnail for you by specifying the width and
height. If you leave the Crop checkbox unchecked, the thumbnail is scaled to fit; if you
check it, the image is trimmed accordingly. In case you are bad at mental math (like me),
you can enter only a width or height; the other is automagically calculated to match pro-
portionally. You can also categorize the image, add specific alternate text that you want
associated with it, or type in a caption that provides a lengthier description.

Figure 4-6. Images tab

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

114

8326CH04.qxd 4/11/07 11:40 AM Page 114

Figure 4-7. Image view/edit info

Files
The next tab over is the Files tab. Since there are no files uploaded for a default installa-
tion of Textpattern, Figure 4-8 shows my own site’s Files listings. Similar to Images, you can
browse your computer for files to upload and search the list of uploaded files by a variety
of criteria. Unlike Images, however, your file is not renamed to a sequential number when
you upload the file. Also, there are fewer options on an individual file page simply by the
nature of a document or archive file versus that of a graphic (as is evident in Figure 4-9).
You can categorize the file and add a brief description.

One nice thing about the Files area is that it tells you how many times each file has been
downloaded if you are using the specific syntax that the Tag Builder can help you create.
However, I prefer to just link directly to my files so that users can see the actual path in the
status bar of their browser. Also, I use Shaun Inman’s stat-tracking program Mint,6 which
includes a download counter plugin that was written by Steve Smith.7 It enables me to
view my site’s traffic as well as file downloads—all from the same user-friendly interface.

BASIC CONTENT MANIPULATION

115

4

6. www.haveamint.com
7. www.orderedlist.com/articles/pepper-download-counter

8326CH04.qxd 4/11/07 11:40 AM Page 115

Figure 4-8. Files tab

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

116

8326CH04.qxd 4/11/07 11:40 AM Page 116

Figure 4-9. File view/edit info

Links
In the Links section you can add links to external websites that you find interesting. You
might be wondering why this section exists when you can just as easily dump links into an
article. This is true, but sometimes you might find something of interest that you want to
link to, but either due to laziness or lack of time do not want to write up a full article or
blog post about it. This is where the Textpattern Links tab comes in handy. Some people
choose to use links on the site as the default installation does: with only a few semistatic
outgoing references. Others, myself included, tend to update the Links area more often
than actually writing articles. The Internet is made up of linkers and thinkers, as they say—
and we are all members of both categories.

I often find good articles on design or web development. Although I do not really have
anything insightful to add to the article, I still want to bring it to others’ attention. So, to
my Links area it goes, which has two benefits. First, the links go out via RSS over their own
feed, so people can subscribe to them separately from my own articles; second, it enables
for easy browsing of a links archive. I find myself referring to my own Links list from time
to time when I cannot remember where a helpful article is that someone else wrote.

BASIC CONTENT MANIPULATION

117

4

8326CH04.qxd 4/11/07 11:40 AM Page 117

So, similar to the rest of the subsections in the Content area, you can search links via a
variety of criteria and can go back in and edit any links. You can also click the column
headers to sort by ascending or descending order. When you click an individual link, you
are not actually taken to a separate page, as with Files or Images; instead, the text input
fields, the category drop-down menu, and the textarea with that link’s information are
populated, as shown in Figure 4-10. Note that the Sort Value is identical to the Title. By
default, if you do not specify a Sort Value, it simply inherits from the Title field. I suppose
that if you wanted to specify an output order you could number every link, but that would
be ridiculously tedious. Besides, the way I display links on my site is always with the latest
link posted at the top anyway, so sort order is a moot point for the way I use them.

Figure 4-10. Links tab add/edit link

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

118

8326CH04.qxd 4/11/07 11:40 AM Page 118

Comments
The last—but certainly not least—aspect of the Content interface is the Comments tab, as
shown in Figure 4-11. As your blog is read more often and increases in the number of vis-
itors, two things happen. First, you meet people who are like-minded (or at least share an
interest in the topics of your writing). Second, you occasionally find people who really do
not think before they speak (or type, in this case). One thing you probably will not have to
worry about a whole lot is automated comment spam. The way that Textpattern is set up
by default, in order for a comment to be posted, the user must first click a button labeled
Preview before the Submit button even appears. This process tends to befuddle automated
scripts that might otherwise bombard your site with poorly written advertisements for
miscellaneous products. Customization and protection of your Comments form will be
covered further in Chapter 5. For now, let us look at how the Comments admin area works.

Like everything else in Textpattern, you can search in just about any manner you choose:
via: ID#, parent article, commenter’s name, message contents, email address, website URL,
or even IP address. The columns are fully sortable in ascending or descending order, per
the typical TXP functionality. If you click the name of the parent article, you are taken to
the Write tab, in which you can peruse the article to help refresh your memory about the
context of the post and the ensuing conversation. If you click the ID# of the comment
itself, you are taken to a page that looks like Figure 4-12, in which you can change anything
you want. As a common courtesy, though, avoid the temptation of putting words into
people’s mouths. If they are being offensive, simply delete their comment and/or ban their
IP address.

BASIC CONTENT MANIPULATION

119

4

Figure 4-11. Comments tab

8326CH04.qxd 4/11/07 11:40 AM Page 119

Figure 4-12. Comment view/edit

Summary
If you have fully absorbed all that was contained in this chapter, you now have everything
you need in order to be a savvy and even dangerous content creator. You have learned to
use Textile with precision to format your writing in ways that would astound mere
mortals—but you are not a Jedi yet! You must face the third trial: the infamous
Presentation area of the Textpattern interface. In the next chapter, you will learn to wield
the power of TXP tags to create a lean, mean content management machine! Okay, so
maybe it will not actually be so mean, but it will surely be lean and efficient because that
is what Textpattern is all about.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

120

8326CH04.qxd 4/11/07 11:40 AM Page 120

8326CH04.qxd 4/11/07 11:40 AM Page 121

8326CH05.qxd 4/17/07 3:37 PM Page 122

5 PRESENTATION

8326CH05.qxd 4/17/07 3:37 PM Page 123

In this chapter you will really start to get into what makes Textpattern so versatile and
enjoyable to use when creating websites. While the learning curve for the new syntax
might seem quite steep, the close resemblance to XHTML should help to make you famil-
iar with the process rather quickly. While the Presentation area of the Textpattern Admin
interface consists of only four tabs, it is by far the most complex part of the entire system.
These four portions are: Pages, Sections, Forms, and Style. I have tried to show how they
are interrelated, even though they appear differently from left to right as actual tabs.
Some of the terminology might be a bit misleading, so it is best to think of pages as tem-
plates and forms as snippets of code. For the sake of consistency, I will address them by
what they are labeled in Textpattern, but just be aware that the term pages does not refer
to an *.html page, nor does the term forms relate to the <form> element.

Overview
In Textpattern, a page is a template containing structural markup that has dynamic tags
from which content flows into your site via what you have entered in the Write area of the
Content tab. You can think of it as a static XHTML page with openings left for frequently
updated portions to be included. If you are familiar with Apache’s SSI (Server Side
Includes) capability1 or if you use raw PHP to include files,2 you probably already have
some experience in how this works. If Apache and PHP are not your cups of tea, do not
head for the door just yet because we will cover the concept of includes momentarily.

Assuming that you have installed Textpattern at the root of your site and have chosen
/section/title for your permanent link mode, sections can be thought of as everything
after your domain name but before the title of your article. Figure 5-1 shows the typical
hierarchy of Textpattern, as it appears by default after the initial setup process is com-
pleted. It consists of three page templates: default, archive, and error_default. The
default page template is shared by the default and about sections, while the article sec-
tion uses the archive page template. The error_default page template is interesting in
that it does not actually need to have a section associated with it because it is a catch-all
for errors typically caused by someone attempting to reach part of your site that does not
exist. That being said, you can create a section to associate with it for testing or type in a
gibberish URL to make sure it is caught properly.

Of course, the default installation of Textpattern is pretty vanilla, meaning that it does not
really have any distinctive flavor to it. Personally, I like the fact that more emphasis has
been placed on making the Textpattern framework developer- and designer-friendly
instead of wasting efforts on needless themes or locking you into nested table–based tem-
plates like other content management systems (CMSs). While it might be fun to get a rudi-
mentary site running within minutes using prefabricated settings, this momentary elation
cannot really compare with the sense of gratification when completing an entirely custom-
built site solution. Textpattern tailors to the artisan in all of us, providing a venue to create
personal instead of generic user experiences. This is what makes the difference between a
gourmet chef and a fast-food employee. Entrées that are cheap and quick might be good
in a pinch, but when was the last time you read a restaurant review praising the Big Mac?

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

124

1. http://httpd.apache.org/docs/1.3/howto/ssi.html
2. www.php.net/include

8326CH05.qxd 4/17/07 3:37 PM Page 124

Figure 5-1. Textpattern setup: default installation

In that regard, Textpattern presupposes a bit of design skill and familiarity with CSS. With
a little talent and some persistence, you can create sites that are far more complex than
what Textpattern appears to be at first glance. Figure 5-2 depicts the information architec-
ture hierarchy for the Godbit Project website, which will be covered at length in Chapter 15.
For now, just peruse the diagram to get a general feel for what can be done beyond the
initial setup phase. If the default installation is the tip of the iceberg, Godbit.com could be
considered as being located somewhere near the waterline because Textpattern can
be used to construct and manage sites with even greater depth.

PRESENTATION

125

5

Figure 5-2. Textpattern setup for Godbit Project website

8326CH05.qxd 4/17/07 3:37 PM Page 125

Pages
Now that we have covered some of the overarching concepts behind the structural
aspects of Textpattern, it is high time we looked at the actual components that comprise
this area. When you initially click the Presentation tab, the first visible subtab is Pages (see
Figure 5-3). You notice that the default DOCTYPE being served is XHTML 1.0 Transitional,
but you can, of course, change it to whatever you like. Personally, I prefer XHTML 1.0 Strict
because it encourages further separation of content and presentation by doing away with
attributes such as align.3 Additionally, it is the highest document type that can be effec-
tively served as content-type="text/html"; whereas XHTML 1.1 is supposed to be served
as application/xhtml+xml, which unfortunately cannot be interpreted correctly by the
decrepit Internet Explorer (IE) 6 or the new IE 7. Since these two browsers comprise a large
market share, it is my recommendation that people use XHTML 1.0 Strict.4 Additionally,
some JavaScript compatibility issues can arise when serving a document as applica-
tion/xhtml+xml, so it is best to stick to the text/html MIME type.

Oddly enough, in the Pages area there is not a way to simply create a new, blank template.
Instead, you have to use the text field toward the bottom labeled ...or, copy page as, which
enables you to create a new page template and edit it further from there. With that pecu-
liar snafu aside, the rest of the interface is pretty intuitive and easy to learn.

Please be aware that although HTML 4.01 Strict is preferred by some web development
code experts such as Roger Johansson5 and Robert Nyman,6 Textpattern outputs XHTML
by default. It does so for tags that are self-closing (also called self-terminating) in
XHTML, but are not in HTML. Such tags include image and break
,
which occur regularly in your articles if you use Textile for formatting, not to mention
that the actual TXP syntax such as <txp:article /> resembles XHTML. It is therefore
best that you stick with either XHTML 1.0 Transitional or move up to XHTML 1.0 Strict.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

126

3. www.24ways.org/advent/transitional-vs-strict-markup
4. www.sonspring.com/journal/xhtml-10-rollback
5. www.456bereastreet.com/archive/200512/beginners_should_start_with_html_not_xhtml
6. www.robertnyman.com/2005/11/02/html-or-xhtml

8326CH05.qxd 4/17/07 3:37 PM Page 126

Figure 5-3. Pages/template area

Tag Builder

Down the left side of the Pages area you see a series of links, each of which expands
to reveal a set of helpful tools that can help you build the necessary <txp:... /> tags to
power your site. The main categories of tags include Article Output, Article Navigation, Site
Navigation, XML Feeds, Miscellaneous, and File Downloads. As you build your site, the tags
that you probably will use most frequently are those that control Article Output, as well as
miscellaneous tags such as Page Title, CSS Link, and Output Form. There are also a slew of
other tags that are not included in the cheat sheet, but their usage will be covered in later
chapters and in the comprehensive tag manual at the end of this book. For now, you can
get started by learning the essentials and then build from there. When you click any of the
Tag Builder links, a pop-up window appears that resembles the one depicted in Figure 5-4.
It is recommended that you use Tag Builder to start out, but gradually learn to write TXP
tags by hand because it will save you time in the long run as well as keep you from adding
unnecessary attributes via the wizard approach.

PRESENTATION

127

5

8326CH05.qxd 4/17/07 3:37 PM Page 127

Figure 5-4. Tag Builder pop-up window

Article Output
Articles (Single or List)—<txp:article />: For this tag, there are a variety of options
from which you can choose, all of which are not necessary depending on what you are try-
ing to do. I will just run down the list of choices as they appear in the Tag Builder pop-up
window.

Status: This field can be Live, Sticky, Pending, Draft, or Hidden. These choices corre-
spond to the top-right fieldset when you have clicked the Write tab. When creating
a new article or editing an older one, you can set these options. Likewise, the Tag
Builder pop-up window helps you construct a TXP article tag that outputs only
these specific types. If you do not specify any restrictions, it displays articles of live
status.

Time: This field accepts three values: Past, Future, or All. Past is the default, which
causes articles to appear as they are posted, keeping future articles from appearing
at all until their specified dates arrive. If you enter Future for this setting, only arti-
cles with dates in the future will be visible, whereas all past articles will not be dis-
played. This could be good for instances in which you are using Textpattern in an
event planning setting, in which past events are no longer relevant. If you choose
All, both past and future articles will be visible. There is no setting for Present
because the instant you post an article, from a logical standpoint it is considered to
be in the Past. The present, as far as a computer is concerned, is literally only the
current moment in time, which is always passing by. Heavy philosophy, huh?

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

128

8326CH05.qxd 4/17/07 3:37 PM Page 128

Search all sections: This attribute, which can be either Yes or No, is used only
when the TXP article tag is being used for search results. If you do not enter any-
thing for this attribute, the search results default to the settings specified in the
Sections tab of the Admin interface. For the most part, you probably want to han-
dle it from there, but this attribute enables you to override the global setting in
specific instances.

Search sticky articles: Much like the previous attribute, this option enables you to
specify whether or not articles that have been deemed sticky are included in search
results. The default is No and there is no way to set this globally. You probably will
not want to usually include sticky articles in your search results because they are
meant to have a place of more permanence and prominence on your site (for
instance, a company announcement that needs to stay on the front page for an
indefinite amount of time).

Display how many? This attribute does exactly what it says. If you want a listing of
5 articles, type 5 in the text field. If you want only a single article, just type 1. If you
do not specify anything at all, the default of 10 articles will display.

Skip: This option corresponds to the offset attribute, and I have suggested that it
be changed to reflect that. At the time of this writing, though, Skip is how it is
worded. Anyway, it enables you to specify the number of articles that will not
appear. If you are attempting to build a listing of article titles, but have 2 full arti-
cles shown on the same page and do not want to be redundant, you might enter 2
in this field. Doing so would build a list, but skip/offset the latest two articles by the
number you have specified.

Page by: This option is used in conjunction with the <txp:older>...</txp:older>
and <txp:newer>...</txp:newer> tags. These tags navigate through pages con-
taining a listing of articles, and the pageby attribute of the <txp:article /> tag
tells Textpattern how many articles to skip with each click of Older and Newer. More
on this topic will be covered in Chapter 15.

Sort by: This attribute can accept a number of values in either ascending or
descending order: Title, Date posted, Last modification, Section, Category 1, or
Category 2. It can also sort via random criteria, which will force the list to be regen-
erated each time the page loads.

pgonly: Setting this attribute causes a counter to be incremented on the server
side, but never displayed in the actual XHTML. It is useful for situations in which
you want to use the pageby attribute because it enables Textpattern to keep track
of which sequence in a series of articles is currently being displayed. Thus, it knows
how far to jump forward or backward, based on the user’s navigational choice. It is
recommended that unless you are actually making use of it, you should leave the
attribute out entirely.

Sticky articles are simply articles that have a more permanent place on a page. They
stick in place, unaffected by other articles being added; hence the term sticky.

PRESENTATION

129

5

8326CH05.qxd 4/17/07 3:37 PM Page 129

Allow form to be overridden? This attribute defaults to Yes and can safely be left
out unless you specifically want to restrict an article from being overridden. It can
be controlled on a global basis via the Advanced portion of the Preferences area.
Likewise, it can be done on a per-article basis from the Write interface. Note that
previously overridden articles will remain as is, regardless of whether you disallow
future instances.

Form: This is an attribute you will be using quite frequently to control the
form/snippet via which the article info will be formatted. For instance, you might
want to have the full body of the article displayed in some instances, yet show only
a listing of headlines in others. By using this selection, you can create different
<txp:article /> tags for each specific need.

List form: This tag is meant for outputting a list of articles when you are not on an
individual article’s page (it takes effect when you are on a /section/ of the site).

Articles (Custom List)—<txp:article_custom />: This tag is similar to the typical article
tag, but in my opinion is far more versatile and powerful. While you can output articles
only from the current section with the other tag, with article_custom you can pull in arti-
cles as lists or in their entirety from completely different sections. Therefore, this tag
makes up the backbone of a multisectional news or community site. Following are options
you can use in the Tag Builder pop-up window, although all of them need not be used.

ID#: This option enables you to build a custom article that outputs only a specific
article, which is beneficial if you want the benefits of Textile formatting on an oth-
erwise static part of your site. You can then go back in, edit this same article, and
treat it as an actual HTML file instead of a dynamic portion of a blog that gets
replaced when new articles are written. You can see the unique ID of each article in
the left column of the Articles portion of the Content area.

Status, Section, Category, Time, Sort by, Display how many?, Skip, pgonly,
Allow form to be overridden?, and Form all work exactly the same as they do for
the <txp:article /> tag, so I will not repeat their purposes here. Refer to the
previous discussion for information.

Month: This aspect works much like the Time aspect. You simply type in the year
and month in a four-digit and two-digit format, respectively. A list of articles from
that particular month is then output, which comes in handy for constructing hand-
coded archive functionality.

Keywords: This option enables you to use the Keywords portion of the Write inter-
face of the Content area to group articles that have similar properties or character-
istics. For instance, if you want to output all articles with the keyword of important,
you can do so. Likewise, you can also specify multiple keywords, separated by com-
mas.

Has excerpt: This option can be used to display only articles that have an excerpt
saved. Those without are not shown. The default is No and it can safely be omitted
unless this functionality is specifically required for your particular needs.

Author: This attribute enables you to output an article or list of articles by a partic-
ular author. This is helpful if you are setting up individual profile pages for each site
author and want to provide a list of recent works by each person alongside basic
biographical information.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

130

8326CH05.qxd 4/17/07 3:37 PM Page 130

Article Navigation
Previous Article Title—<txp:prev_title />: This option simply outputs the title of the
previous article if one exists.

Next Article Title—<txp:next_title />: This option outputs the title of the next article if
one exists.

Previous Article Link—<txp:link_to_prev>...</txp:link_to_prev>: This tag creates a
link to the previous article, if one exists. It can accept one attribute, showalways="y",
which causes it to remain on the screen as plain text, even if no previous article exists.

Next Article Link—<txp:link_to_next>...</txp:link_to_next>: This tag creates a link
to the next article if one exists. It can accept one attribute, showalways="y", which causes
it to remain on the screen as plain text even if no previous article exists.

Older Articles Link—<txp:older>...</txp:older>: This link paginates in reverse chrono-
logical order through a listing of articles and skips in increments set via the pageby attrib-
ute of the <txp:article /> tag. It can accept one attribute, showalways, which keeps the
text present on the screen even when there are no older articles.

Newer Articles Link—<txp:newer>...</txp:newer>: This link paginates in forward
chronological order through a listing of articles and skips in increments set via the pageby
attribute of the <txp:article /> tag. It can accept one attribute, showalways, which
keeps the text present on the screen, even when there are no newer articles.

Site Navigation
Homepage Link—<txp:link_to_home />: This tag creates a link back to the home direc-
tory of your Textpattern installation. It can take one attribute of class, which is converted
to the equivalent XHTML attribute and value. Assuming that you installed it at the root of
your domain, it takes you back to www.example.com. If you are developing your site in a
temporary location, it behooves you to use <txp:link_to_home /> to avoid future con-
flicts when you change URLs.

Section List—<txp:section_list />: This tag can take a variety of attributes and is used
to create navigation for your site based on the sections that are available. Like the
Homepage Link tag, I tend not to make use of this tag, but I list it here in case you find a
need for it. Here are the possible attributes and their values:

Include default section: This attribute enables you to either include or exclude the
default section from your list. Sometimes you might not want a link to home to
appear among the other links because you might want to put it elsewhere, such as
on your site’s logo.

Text to use for default section link: Assuming that you do include the default sec-
tion, this is the text used for that link. The default section is peculiar in that you do
not have control over what it is named, as you do with all other sections. So instead
of having a link labeled default, it enables you to put something more appropriate,
such as home.

PRESENTATION

131

5

8326CH05.qxd 4/17/07 3:37 PM Page 131

Sections: This attribute accepts a comma-separated list of sections that you want
to be displayed. If it is left blank, all sections display. This attribute is of higher
importance than Exclude, so if you specify anything here, leave that one blank.

Exclude: If (and only if) you left Sections blank, enter the sections that you do not
want to appear here. If it is blank, no sections are excluded and all are visible.

Label: This tag is unnecessary, but if you enter a value, it serves as the first item in
the list. If you specify a wrap tag of ol or ul, the label appears as the first list item.

Label tag: If specified, the label can have a unique wrap tag. For instance, you
might want to have a definition list <dl> as your wrap tag, in which the label for the
entire listing is a <dt>, but the sections are contained within <dd>. If left blank, the
label simply inherits the break tag specified for the entire list.

Wraptag: If entered, this value specifies the container for the list. If you want an
unordered list, simply type ul; likewise, if you want an ordered list, type ol. Note
that you do not need to specify a closing tag because Textpattern handles it for
you. Also, be aware that if you choose either of those two for wraptag, your List
break tag is automatically li. You can just as easily use div or some other block
level element if you so desire.

CSS class: This is the class name applied to the wraptag element. If you do not
specify a class, the default is class="section_list".

CSS class for active list item: This is the class attribute and value associated with
the section that a visitor is currently on. For instance, if a visitor is browsing your
archive section, and you have specified active for this attribute, the tag and class
value might look like this: <li class="active">archive
.

List break tag: Typically used in conjunction with wraptag, break places the tag of
your choice around each section name. When using ordered or unordered lists, the
break tag does not need to be specified because it is automatically li. If you are
not using a dependent pairing such as that one, br can be used. Textpattern is intu-
itive enough to know that
 is a self-closing tag.

Category List—<txp:category_list />: Like Section List, this tag can accept a number of
different attributes, so I do not repeat the ones that are shared between the two, such as
wraptag or break. Note that if no class is specified, the default is class="category_list".
Here are attributes unique to Category List:

Type: This attribute accepts one of four possible values because Categories apply to
multiple aspects of your content: article, links, image, or file.

Parent: This attribute enables you to specify the parent category, if one exists, for
the listing of categories you want to output.

Categories: Much like the way Sections work in the Sections List tag, this attribute
enables you to specify which categories are displayed and takes a higher prece-
dence than Exclude.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

132

8326CH05.qxd 4/17/07 3:37 PM Page 132

Section: This attribute enables you to specify which section the category listing will
be restricted to. It can coexist with the Categories attribute and displays the cate-
gories you choose.

Link to specific section: If this attribute is set to Yes, the links for all categories are
applicable only to the currently active section. If you enable it, do not specify a
Section because it will be overridden and apply only to the current one, anyway.

Popup List—<txp:popup />: This tag is not really titled correctly because it just creates a
drop-down <select>...</select> list of <option>...</option>, which are essentially
being used as links to the various categories or sections within your site. Due to accessibil-
ity reasons, and because this is not really a proper use of a drop-down element, it is not
recommended that you use it. All other attributes, such as label and wraptag, work the
same way as previously mentioned TXP tags.

Recent Articles—<txp:recent_articles />: This tag outputs a listing of recently written
articles or it can be used to generate a listing of posts that range from older to newer. It
accepts all the criteria that were covered already, so simply refer to them. The same func-
tionality can be achieved by using <txp:article_custom>, so it is a matter of preference if
you actually use this tag.

Recent Comments—<txp:recent_comments />: Unlike its counterpart pertaining to arti-
cles, this tag is actually essential to display a list of comments that have been made on
your site. It outputs a link with the name of the person, followed by the article on which
they commented: John Doe (Article Name). The attributes that the tag accepts have been
covered already.

Related Articles—<txp:related_articles />: This tag outputs a list of related articles,
based on the criteria of your choosing. It can accept a myriad of attribute choices, all of
which should be quite familiar to you by now. The one unique aspect is that it enables you
to choose how they are related: by Category 1, Category 2, or both.

Search Input Form—<txp:search_input />: This tag outputs a search form that scours
your site for the relevant search term. It is not incredibly robust, but is quite good at find-
ing text strings, regardless of their surroundings. For instance, a search for dog returns
both dog and dogmatic. If you do not specify a section, it defaults to what you chose in the
Sections tab, depending on which ones you have opted to be searchable. You can also
choose what text will appear on the button, as well as the width of the search field (Input
size). The rest of the attributes are pretty standard.

XML Feeds
Articles Feed Link—<txp:feed_link />: This tag outputs an XML feed in either an RSS
2.0 or Atom 1.0 format. Of course, there’s nothing keeping you from constructing two dif-
ferent feeds and providing links to both. You can also specify whether it is an in-body feed
or one called from the <head>...</head> of the document in the format drop-down
menu. The <a href... refers to a feed you would make as a normal clickable link; and the
<link rel... choice is the type that should be added in the head.

PRESENTATION

133

5

8326CH05.qxd 4/17/07 3:37 PM Page 133

Links Feed Link—<txp:link_feed_link />: This tag enables you to provide either an
RSS 2.0– or Atom 1.0–formatted XML feed for entries to your Links via the Content portion
of the Textpattern Admin area, which enables people to subscribe to your articles and links
separately. Of course, if you want them in the same feed, you can use a /section/ of your
site specifically for outgoing links and have that merged with your normal XML because
they would both essentially be articles, albeit used in different ways.

Miscellaneous
Page Title—<txp:page_title />: This tag outputs the name of the site, coupled with the
title of the article, which can be separated by whatever you choose. If you want to add a
vertical bar to format your page title like Site Name | Title of Article, you need to
enter | for the separator, which ensures that the necessary whitespace appears after the
site name and before the article title.

CSS Link (Head)—<txp:css />: This tag simply outputs a reference to an external CSS
file. Like the XML feeds, there can be one of two formats, <link rel... or css.php...,
which are both for use within the <head>...</head> of a document. If you use the link
method, it outputs the full reference to the file. Though css.php accepts multiple attrib-
utes, the only one it actually uses is Name. If you use the css.php format, it outputs only
the raw URL for the CSS file, but does not actually use it to affect presentation. You can
use this format if you need to import multiple CSS files from a single style tag, like so:

<style type="text/css" media="all">
@import "<txp:css format="url" n="default">";
@import "<txp:css format="url" n="company">";
@import "<txp:css format="url" n="products">";
@import "<txp:css format="url" n="contact">";
</style>

Code such as this yields the following:

<style type="text/css" media="all">
@import "http://example.com/textpattern/css.php?n=default";
@import "http://example.com/textpattern/css.php?n=company";
@import "http://example.com/textpattern/css.php?n=products";
@import "http://example.com/textpattern/css.php?n=contact";
</style>

Site Name—<txp:sitename />: This tag outputs the string of text that is stored in the Site
name text input field in the Preferences portion of the Admin area.

Site Slogan—<txp:site_slogan />: This tag outputs the string of text that is stored in the
Site slogan text input field in the Preferences portion of the Admin area.

Breadcrumb—<txp:breadcrumb />: This tag outputs a series of indicators pertaining to
a page’s location in the site hierarchy. (It might look like this: Home ä Section ä Article.)
The tag accepts several attributes. The separator works much as it does in
<txp:page_title />—by adding a visual break between words in the breadcrumb. Link

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

134

8326CH05.qxd 4/17/07 3:37 PM Page 134

breadcrumbs enables you to specify whether the words contain links or are plain text. You
can also add a CSS class for links as well as the containing wrap tag via CSS class. If no
wrap tag is specified, the default is a paragraph: <p>...</p>. If label is left blank, the site’s
name is used instead. The title attribute controls whether sections are displayed by their
raw titles or whether their names are used instead (either y or n).

E-mail Link (Spam-Proof)—<txp:email />: This tag does just what it says: it produces a
“spam-proof” email link on your site that will (hopefully) protect you from email spam, or
at least the automated type. It should be fairly self-explanatory. Link text refers to the text
within the opening and closing anchor tags. Link tooltip refers to the title attribute, which
is given to the link itself. Supposing that the email address you wanted to encode is
john.doe@example.com, the following would be the corresponding TXP and XHTML code.
As you can see, it is impossible to discern the contents of the original address, though it
appears as a mailto: link on the page.

Textpattern code:

<txp:email email="john.doe@example.com" linktext=å

"Email - John Doe" title="Click to Email!" />

Encoded XHTML:

<a
href="mailto:johå

0;.doe@exampleå

.com" title="Click to Email!">Email - John Doe

Links List—<txp:linklist />: This tag outputs one or many links that you have entered
in the Links area of the Content tab of Textpattern. You should already be familiar with all
the attributes and their input fields.

Password Protection—<txp:password_protect />: This tag creates a prompt for a user-
name and password for the page template on which it is used. If users do not enter the
correct password, they are taken to your error_default page template. Note that you can
also create a template named error_403, which handles all errors that occur due to HTTP
Error 403 Forbidden”—a result of a failed user/password/login attempt.

Output Form—<txp:output_form />: This tag is one of the staple ingredients of building
a Textpattern site. It can be used to output any form (snippet) of code that you have cre-
ated. It is incredibly simple, taking only one attribute: the name of the form to be pro-
duced. Typically, it is used to output forms that are of the misc (miscellaneous) type in the
Forms portion of the Presentation area, although it can be used for just about anything.

Language—<txp:lang />: This single tag requires no attributes. It is simply meant to be
used within the <head>...</head> of a document, like so:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="<txp:lang />"å

lang="<txp:lang />">

PRESENTATION

135

5

8326CH05.qxd 4/17/07 3:37 PM Page 135

On a site that uses English of the United States variety, such as www.w3.org, it looks
like this:

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" lang=å

"en-us">

File downloads
File Download List—<txp:file_download_list />: This tag builds a list of file down-
loads, based on criteria that you specify. You are no doubt familiar with all these attribute
choices already. The files that it pertains to are uploaded via the Files portion of the
Content area in the Textpattern Admin interface.

File Download—<txp:file_download />: This tag builds the link for a single file down-
load, based on criteria that you specify. If no form is specified, it defaults to the files
form. In some instances, it might not be the format you would prefer, which is why there
is the next option.

File Download Link—<txp:file_download_link><txp:file_download_name /></txp:
file_download_link>: This tag enables for greater control in formatting the text/code
around the File Download link. You are no doubt familiar with all these attribute choices
already. As far as I can tell, neither the Name nor Description inputs for this Tag Builder
actually have any bearing on the output. Aside from that, it is pretty straightforward.

All Pages

The column on the far right side of the Pages area has a listing of all page templates. By
clicking the name of any of them, you can edit the contents. Likewise, by clicking the x on
the right of each one, you will be presented with the option to delete it—a confirmation
box appears, asking Really Delete? Clicking OK deletes the section, whereas clicking Cancel
leaves things unchanged.

Sections
Now that you know how to construct page templates, it is time to create some site sec-
tions to associate with said templates. When you click the Sections tab, you will see a
screen that looks like Figure 5-5. You will notice that the Default section does not contain
as many options as the subsequent sections, mainly because it is the very first page that is
loaded when people type in your domain name. As such, you cannot delete or change the
Default, aside from specifying between Uses page and Uses style.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

136

8326CH05.qxd 4/17/07 3:37 PM Page 136

Figure 5-5. Site Sections area

For the rest of the sections, however, you can tweak quite a few things. After creating a
section (or with an existing section), you can change the name/title and specify which
page/style each one uses. There are also a series of choices possible via radio buttons:
Selected by default?, On front page?, Syndicate?, and Include in site search?. Selected by
default? can be Yes for only one section because it pertains to which section is selected in
the Write portion of the Content area. On front page? refers to whether articles in this sec-
tion will be listed in a listing produced by the <txp:article /> tag on the index page or
whether these articles will appear only when the user is on the corresponding /section/
of the website. Syndicate? controls whether an Atom or RSS feed is produced for new arti-
cles posted to this section. Include in site search? controls whether a section is used in
search results.

Forms

In the Forms area (which might be more appropriately named Code Snippets), you build all
chunks of code that control the dynamic aspects of your site. When you click the Forms
tab, you see a screen that looks like Figure 5-6. The column on the right side of the page
is a listing of all the available forms, both the defaults and those that have been user-
created. Unlike the Pages area, multiple Forms can be deleted by checking the correspon-
ding checkbox, choosing Delete from the drop-down menu, and then pressing Go.

PRESENTATION

137

5

8326CH05.qxd 4/17/07 3:37 PM Page 137

Figure 5-6. Forms/snippets area

Tag Builder
You see the familiar Tag Builder links on the left side of the page, which are divided into the
following tag types: Articles, Links, Comments, Comment Details, Comment Form, Search
Results, and File Downloads. As was mentioned in the previous description of the Tag
Builder, this is not a comprehensive list of Textpattern tags; they are simply some of the
most commonly used tags. (For a full listing, refer to the tag reference appendix in
the back of this book.) For now, we will look at the tags that are listed and briefly cover
how to use them. Since most of the attributes are similar to those in the Tag Builder for
Pages, I will not repeat them here.

Articles
Permanent Link—<txp:permlink>...</txp:permlink>: This is the typical format for a
permanent link, with <txp:title /> as the text inside the link. However, I do not recom-
mend using this format because it places the title attribute and value title="Permanent
link to this article" on every single link. This is bad for several reasons. First, in terms
of accessibility, a person using screen reading software will have this phrase spoken
repeatedly to them if they have the title attribute enabled. Second, it creates a needless
tooltip in nearly every browser when the user hovers the mouse over a link. Third, the
popular blog ranking and search engine site Technorati gets tripped up on title attributes,
saving them as the title of your posts instead of the text within the link. Therefore, I rec-
ommend the following format instead (using permlink as a self-closing tag):

<a href="<txp:permlink />"><txp:title />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

138

8326CH05.qxd 4/17/07 3:37 PM Page 138

This outputs the following XHTML:

å

Title of Article.

Posted—<txp:posted />: This tag outputs the date on which an article was created. You
probably do not need to add any attributes because the defaults simply inherit from the
settings in the Preferences portion of the Admin area. If you need to override it, you can do
so by entering a Time format string such as: %b %d, %Y, which would result in something
similar to May 10, 2007. Likewise, by entering a Locale, it corresponds to the language to
be used. Unless you have a specific reason to change this, it will default to the Preferences
portion of the Admin area.

Title—<txp:title />: This tag simply outputs the title of the article, based on what you
entered in the Write portion of the Content area.

Body—<txp:body />: This tag displays everything within the large text area that you
wrote in the Write portion of the Content area.

Excerpt—<txp:excerpt />: This tag displays everything within the large text area that you
wrote in the Write portion of the Content area. Note that the two are not necessarily mutu-
ally exclusive. If you have need for two separate chunks of content, it is possible to mix the
<txp:excerpt /> and <txp:body /> tags together on the same article page. Depending on
how you have the Atom/RSS syndicated, it might not be the best idea.

Section—<txp:section />: This tag simply outputs the name of the current section. If
you choose Yes for Link to a list of other articles in this section?, it simply makes the word a
link that goes to www.example.com/section. If not, the word is plain text.

Category 1—<txp:category1 />: This tag creates a list of links to articles that share the
same first category. For instance, if you had a category named Travels, it would present you
with all articles that have Travels set as Category 1, but would exclude those that have
Travels set as Category 2.

Category 2—<txp:category2 />: This tag creates a list of links to articles that share the
same second category. For instance, if you had a category named Fishing, it would present
you with all articles that have Travels set as Category 2, but would exclude those that have
Fishing set as Category 1.

The Permanent Link tag also allows for an inline style attribute to be assigned. It
is recommended that you not use it because inline styles are the modern-day
equivalent of using the antiquated ... tag, mixing presentation
with content. If you are not sure what this means, just trust me—do not use inline
styles with the permlink tag or in any other XHTML element.

PRESENTATION

139

5

8326CH05.qxd 4/17/07 3:37 PM Page 139

Article Image—<txp:article_image />: This tag presents the article image that has been
specified in the Article image text field under Advanced Options in the Write portion of
the Content area. Escape refers to whether (X)HTML characters are escaped in the
title="..." and alt="..." attributes, such as <, >, &, and so on. You can also assign a
specific ID, which is helpful to provide an anchor link to the image for reference.
Additionally, you can specify a CSS class. It is recommended that you do not use inline
style or alignment; instead, set these stylistic changes by using the hook(s) of ID, class, or
descendent selectors from the parent element.

Comments Invite—<txp:comments_invite />: This tag presents the user with an invita-
tion to comment on the article, based on the phrase specified in the Preferences portion
of the Admin area, unless it has been overridden on a per-article basis in the Write por-
tion of the Content area. By default, it also shows the number of comments that have been
made, although it can be disabled via the Tag Builder. You can also choose Text only to out-
put only the invite phrase and the number of comments. This is useful if you merely want
to provide it for informational purposes or if you want to wrap your own hand-coded link
instead of using the default.

Author—<txp:author />: This tag enables you to output the “real name” of the author, as
specified in the Users portion of the Admin area. You can make it into a link to other
articles by the same author by entering either 1 for Yes or 0 for No. You can restrict the
listing to a particular section, but if you do not it applies to all sections for which the
author has written articles. If you do not specify a single section, you can choose whether
the list of articles pertain to the section the user is currently viewing. This can help avoid
redundancy.

Links
Link—<txp:link />: This tag outputs a link with default formatting. You specify one addi-
tion, the rel="..." attribute, which is meant to show relationship. This is not a commonly
used attribute, but one that is used for the XFN. The XHTML Friends Network was pio-
neered by the Global Multimedia Protocols Group in an effort to help links be more
semantic in showing the relationship between linkers. More information can be found at
the XFN website.7

Link, title=Description—<txp:linkdesctitle />: This tag does nearly the same thing as
<txp:link />, except it uses the description provided with the link in the title="..."
attribute.

Link Name—<txp:link_name />: This tag provides only the name of the link and gives the
option to escape (X)HTML code, which is helpful for situations in which you wanted to
show the name of the link, but not necessarily make it the clickable text. For instance, you
might want to have the URL be the link, but have the name be nearby as plain text to add
further information.

Link Description—<txp:link_description />: Similar to the Link Name tag, this tag out-
puts only the text stored in the link description. It accepts a variety of attributes, which
should be old hat for you at this point.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

140

7. www.gmpg.org/xfn/

8326CH05.qxd 4/17/07 3:37 PM Page 140

Link Category—<txp:link_category />: This tag outputs the category of the link as plain
text. It accepts some fairly typical attributes.

Link Date—<txp:link_date />: This tag outputs the date when the link was posted and
defaults to what was chosen in the Preferences portion of the Admin area, unless specifi-
cally overridden.

Comments
Comments—<txp:comments />: This tag outputs a list of comments according to the
criteria specified.

Comments Form—<txp:comments_form />: This tag enables you to specify some aspects
of the comment form. Aside from the already thoroughly covered attributes, you can
specify the following: Input size, Message textarea columns, and Message textarea rows. Input
size and Message textarea columns both refer roughly to the width of the text input fields
and textarea, whereas Message textarea rows pertains to how tall the textarea will be.
You could size things this way, but I recommend leaving them as the default and instead
target dimensions via CSS.

Comments Preview—<txp:comments_preview />: This tag enables you to place a
Comments Preview area at a specific location in your template. It is helpful to use this tag
and also provide a blurb informing users that they are looking at only a preview of their
comment, lest they think it is the real thing (and never hit Submit).

Comment Details
Comment Permanent Link—<txp:comment_permlink>...</txp:comment_permlink>:
This tag is meant to be wrapped around the text of your choosing, so that if users want to
link directly to that comment’s anchor, they can do so. It assigns each comment a unique
ID in the link, so that it can be easily referenced from external sources. The default is a
pound sign (#), but via the ajw_comment_num plugin you can output the actual number of
that comment within the article, which makes it a little more descriptive.

Comment Name—<txp:comment_name />: This tag outputs the name of the person leav-
ing the comment. You can also disable the link to the person’s website by choosing No to
Link to commenter’s email address/website?. I recommend that you leave it set to Yes (or
just use the tag without link="..." at all because it defaults to Yes). You should, of
course, disable the email portion of this under the Advanced Preferences portion of the
Admin area by choosing Yes for the choice labeled Never display e-mail address?.

Comment E-mail—<txp:comment_email />: Unless you want people to absolutely hate
you and/or never leave comments on your site, then—for the love of all that is good—
please do not use this TXP tag! It is basically like calling open season for all spammers to
bombard your poor visitors with junk mail. It potentially overrides the setting specified in
the Advanced Preferences portion of the Admin area, so just leave it alone.

Comment Website—<txp:comment_web />: This tag outputs the URL to commenters’
websites. Assuming that you have the <txp:comment_name /> also producing a link to their
sites, you probably won’t need to use this tag unless you want it to be specifically readable.
If so, go right ahead.

PRESENTATION

141

5

8326CH05.qxd 4/17/07 3:37 PM Page 141

Comment Time—<txp:comment_time />: This tag outputs the date on which the com-
ment was posted using the time format specified in the Preferences portion of the Admin
area. You can override it if you want by setting specific attributes, but it makes more sense
to just set it once: “Fixodent and forget it.”8

Comment Message—<txp:comment_message />: This tag works much like the <txp:body
/> tag does—by simply outputting the contents of the person’s comment. Textile, of
course, strips out potentially harmful tags before saving them to the database as raw
XHTML.

Comment form
Comment Name Input—<txp:comment_name_input />: This tag generates the input text
field for where users can enter their names. For accessibility purposes, it is also recom-
mended that you include the necessary <label> tag to ensure that people using assistive
technologies such as screen readers can properly use your comment form. The same goes
for the E-mail, Web, and Message fields as well. Here is an example of what part of an
accessible comment form might look like in XHTML code:

<p>
<label for="comment_name_input">Name</label>

<txp:comment_name_input />

</p>
<p>
<label for="comment_email_input">Email</label>

<txp:comment_email_input />

</p>
<p>
<label for="comment_web_input">Website</label>

<txp:comment_web_input />

</p>
<p>
<label for="message">Message</label>

<txp:comment_message_input />

</p>

Comment E-mail Input—<txp:comment_email_input />: See Comment Name Input.

Web Input—<txp:comment_web_input />: See Comment Name Input.

Comment Message Input—<txp:comment_message_input />: See Comment Name Input.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

142

8. Obscure reference to a pointless advertisement for denture adhesive.

8326CH05.qxd 4/17/07 3:37 PM Page 142

Remember Details Checkbox—<txp:comment_remember />: This tag creates a checkbox
that either writes or deletes a cookie enabling your website to identify repeat visitors. The
cookie is given to the users’ browsers when they leave a comment, so when they return
they need not reenter all their information.

Comment Preview Button—<txp:comment_preview />: This is the only button that is vis-
ible initially when users enter their comments. After pressing it, a preview of their com-
ment is produced on the screen, and only then does the actual Submit button appear. The
reason for this is twofold. First, it enables users to look over their potential contribution to
the discussion, affording the opportunity for proofreading. Second, it cuts down on auto-
mated comment spam, in which people write scripts to brute-force unwanted comments,
which usually contain junk advertisements, or links to sites in an attempt to boost search
engine page rankings.

Comment Submit Button—<txp:comment_submit />: This button does just what it says: it
submits the comment to the database. The comment then appears on the site or is held in
queue until you have a chance to moderate and approve the comment—at which point it
then appears on the site.

Search results
Search Result Title—<txp:search_result_title />: This tag outputs the name of the
article that is found via a search of your site. In terms of functionality, it is identical to
<txp:title />.

Search Result Excerpt—<txp:search_result_excerpt />: Unlike the other search_result_
tags, this one is actually necessary. It is generated dynamically because the concentration
of the relevant search terms is rendered on the fly and presented on the Search Results
page. So, place this tag where you want the snippet of contextual information to be dis-
played for each search result.

Search Result Date—<txp:search_result_date />: This tags works the same way as the
<txp:posted /> tag: it outputs the date format specified in the Preferences portion of the
Admin area.

Search Result URL—<txp:search_result_url />: This tag is equivalent to <txp:permlink
/> when used in a self-closing fashion. It outputs the full URL of the article that contains
the corresponding search result.

File downloads
File Download Link—<txp:file_download_link>...</txp:file_download_link>: This
tag works exactly as it does in the Tag Builder for Sections.

File Name—<txp:file_download_name />: This tag works just as it does in Sections, out-
putting the name of the file that was given when the file was uploaded via Textpattern’s
Files interface.

File Description—<txp:file_download_description />: This tag outputs the description
that was given in the Files interface. It accepts some normal criteria and can be set to strip
out XHTML code before rendering. Additionally, you can specify a wrap tag. If none is pro-
vided, it defaults to plain text with no wrapper.

PRESENTATION

143

5

8326CH05.qxd 4/17/07 3:37 PM Page 143

File Category—<txp:file_download_category />: This tag outputs the category that was
given in the Files interface. It accepts some normal criteria and can be set to strip out
XHTML code before rendering. Additionally, you can specify a wrap tag. If none is pro-
vided, it defaults to plain text with no wrapper.

File Created Time—<txp:file_download_created />: This tag outputs the timestamp for
the date/time when the file was created, according to the format you specify. If none is
given, it defaults to the settings from the Preferences portion of the Admin area. (See the
tag reference appendix for more advanced date formatting options.)

File Modified Time—<txp:file_download_modified />: This tag outputs the timestamp
for the date/time when the file was last modified, according to the format you specify. If
none is given, it defaults to the settings from the Preferences area of the Admin tab.

File Size—<txp:file_download_size />: This tag outputs the size of the file according to
the applicable measurement that you choose, such as kilobytes (KB) or megabytes (MB).
You can also specify how many digits after the decimal point are deemed significant fig-
ures. If neither of these criteria is set, it defaults to KB and two digits after the decimal
point.

File Download Count—<txp:file_download_downloads />: This tag needs no attributes
and simply outputs the number of times each file has been downloaded, assuming that
you use the TXP tags/XHTML syntax and do not link directly to the file itself. I must admit
that I do not use Textpattern to track my download count; instead, I opt for third-party
stat tracking via Mint. It is really just a matter of preference.

Style
Now that we have covered some of the basics behind the TXP tag syntax, it is time to take
a brief look at how the style management is handled in Textpattern. This portion of the
chapter is not an in-depth look at the language or syntax of CSS; instead it covers how CSS
is handled in Textpattern. There are basically two ways to edit your CSS in the Textpattern
interface. The first is no doubt most familiar to you because it is essentially the same
process as using any text editor, albeit more rudimentary. The second way of editing styles
can be done with the CSS editor, which is unique to Textpattern.

To be honest, I am not a big fan of using Textpattern to edit CSS at all; I prefer to edit static
CSS files by hand and upload them using FTP. There are two reasons to do it this way. First,
code highlighting and ease of indentation in programs such as Notepad++ on Windows,9

TextMate on Mac OS X,10 or Bluefish on Linux11 makes variations in code syntax far easier
to read. For an example of the default Textpattern CSS in each of these programs, see

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

144

9. http://notepad-plus.sourceforge.net
10. www.macromates.com
11. http://bluefish.openoffice.nl

8326CH05.qxd 4/17/07 3:37 PM Page 144

Figure 5-7. When using Textpattern to manage CSS, I habitually find myself pressing the
Tab key, only to have it move between form elements in the browser. If this is a problem
for you as well, there is a plugin available that allows for Tab to be used for text formatting
instead of the normal behavior of switching focus.12

Figure 5-7. Notepad++, TextMate, and Bluefish

PRESENTATION

145

5

12. www.utterplush.com/txp-plugins/upm-insert-tab

8326CH05.qxd 4/17/07 3:37 PM Page 145

Raw CSS

Sometimes you might be working on a project that requires using the Textpattern inter-
face for CSS or you might just prefer keeping everything in one browser-accessible loca-
tion. At any rate, when using the Raw CSS area, you see an interface that looks like
Figure 5-8. There’s really not much to it—just a simple textarea into which you can type
your code. Assuming that you already know CSS, there is not much else to say. As you
create new styles, simply change the name you’re referencing in your templates like so:

TXP code:

<txp:css format="link" media="all" n="company" />

XHTML output:

<link rel="stylesheet" type="text/css" media="all"å

href="http://example.com/textpattern/css.php?n=default" />

Figure 5-8. Style area/Raw CSS

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

146

8326CH05.qxd 4/17/07 3:37 PM Page 146

CSS editor

When you are in the Raw CSS area, if you click Edit in CSS editor, the stylesheet is loaded
into the interface depicted in Figure 5-9. If you want this to be the default when you start
out in the Style area, you can change this setting in the Advanced Preferences portion of
the Admin area. Next to Use raw editing mode by default?, click No.

Figure 5-9. Style area/CSS editor

PRESENTATION

147

5

8326CH05.qxd 4/17/07 3:37 PM Page 147

In the style editor, there are several things that can be done. First, you can add a new
selector, which is what comes before the set of curly brackets, indicating what is being
affected by the properties and values contained therein. By adding a new selector and
pressing Submit, that selector is appended to the bottom of the CSS file with an empty set
of property/value. If you click the blue plus sign (+) next to any of the selectors, it adds
another property/value pair.

Likewise, if you press the red delete (x) icon next to any of the values, that value and its
property will be removed. If there is only one pair of property/value for a selector, the
entire selector will be removed when you click the delete icon. Likewise, you cannot save
an empty selector. Make sure that you press Save after you make all your changes, or else
they will be lost.

If you want to create a new stylesheet based on one that already exists, you can use the
...or copy style as text input field to specify the name of your new stylesheet. If you just
want to start with a blank slate, you can click Create or load new style at the top of the left
column. If there are new styles aside from the default, there will also be a delete icon next
to their names under the heading All Styles.

Summary
Congratulations! You have made it through Textpattern boot camp, having covered the
three major aspects of the Textpattern interface: Admin, Content, and now Presentation.
Next up, we will kick it into high gear as you are challenged to think outside of the box and
push the sites you develop in new and creative ways. In Chapter 6, you will learn more
about how the Textpattern model works by using good semantics and advanced templates.
You will also follow the fictional band Buzzbomb and watch its site evolve with TXP.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

148

8326CH05.qxd 4/17/07 3:37 PM Page 148

8326CH05.qxd 4/17/07 3:37 PM Page 149

PART THREE CUSTOMIZING
TEXTPATTERN

8326CH06.qxd 4/17/07 6:02 PM Page 150

6 THE TEXTPATTERN MODEL

8326CH06.qxd 4/17/07 6:02 PM Page 151

The layered complexity of Textpattern makes it very appealing to both novice and experi-
enced developers. It is easy to construct a simple website—a blog, a corporate site, or a
photography portfolio—and build both horizontally and vertically. Sections can be added
on like rooms to a house, and functionality can be built deeper into existing pages.

That flexibility and extensibility are not accidental. Dean Allen and his band of developers
have created an amazingly modular architecture that enables both out-of-the-box publish-
ing and heavy-duty customization. This architectural model is a marked advantage of
Textpattern. Chapter 6 covers the theory and basics behind that model, and how that
foundation influences everything you create in Textpattern.

The semantic ideal
Since the late 1990s, the use of Web Standards in web development has increased expo-
nentially. Jeffrey Zeldman’s famous cascading style sheets (CSS) redesign of A List Apart
and subsequent book, Designing with Web Standards, kick-started a movement that has
resulted in a thriving community of standards-conscious developers. Their influence has
led to the widely publicized redesigns of Wired.com, ESPN.com, and other major sites, plus
countless number of smaller destinations.

The idea of a standards-based Web, in which all browsers and development tools play by
the same rules, holds deep appeal to those who architect the online world for a living. Not
only does it make your life easier but it also leads to faster-loading, more accessible con-
tent for your sites’ visitors.

The fact that using Web Standards enables developers to move away from table-based lay-
outs and crude presentational markup is not the only reason why the movement has
sprung from a few seeds into a full-blown garden. In fact, the benefits are many. Stripping
the noise from HTML leads to smaller file size, easier maintenance, and more future-proof
technology. But the single greatest benefit—and one of the core battle cries of Web
Standards—is the slow but steady creation of a more semantic Web.

Data about data, page hierarchy, and layers

The word semantic gets paired with Web Standards quite a bit. It’s worth taking the time
to define this explicitly. The Webster definition is short: “Of or relating to meaning, espe-
cially meaning in language.” In web development, it means creating documents whose
structure reflects the content—and it all starts with metadata.

Metadata is “data about data” and provides a high-level summary of the document. The
end goal of metadata is to better describe how a document relates to other documents on
the site and ultimately the rest of the Web. At a minimum, it includes the title, description,
and keywords, but it can also extend into authorship, copyright, search engine informa-
tion, and more.

But even if the metadata is explicit, it means little if the structure of the page does not
reflect its content. In a nutshell, a semantic structure means using tags as they were

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

152

8326CH06.qxd 4/17/07 6:02 PM Page 152

designed—to describe what the content means. Paragraphs are wrapped in the <p> tag;
ordered and unordered lists use and , respectively; and headings are marked up
with <h1> through <h6> to cluster content into a logical hierarchy. These tags transform
otherwise meaningless text into a well-formed, detailed document with a clear flow of
information.

“Old school” development techniques muddied this water with heavy-handed and obso-
lete HTML. For instance, this 1990s-era code is still common:

<table bgcolor="#000">
<tr>
<td width="200px">
<bold>Shopping List</bold>

milk

organic baby carrots

cheese

chicken fajita Hot Pockets

</td>
</tr>

</table>

Using a more semantic model, the tables and presentational markup (and <bold>)
are stripped out to distill the markup down to its most fundamental level:

<h3>Shopping List</h3>

milk
organic baby carrots
cheese
chicken fajita Hot Pockets

The current semantic Web has three components, or layers. The structural layer is
defined by the HTML and provides structure to the document’s information (in the pre-
ceding example, it orders the food items into a sensible grocery list). The presentational
layer is controlled via CSS and is responsible for the visual aspect of the HTML, or how
things appear in a browser. Finally, the behavioral layer resides in JavaScript and provides
a foundation for interactivity and functionality standard HTML and CSS cannot provide.
Like peanut butter, jelly, and bread, they work in perfect tandem. This model is the com-
monly accepted “three-dimensional” model you can read about on hundreds of sites and
in dozens of web development books.

The fourth dimension

The three-layer model lives comfortably in three separate files, with the HTML providing
the anchor for the stylesheet and JavaScript. This succinct package can run with or without
a web connection, can be accessed by anyone with a browser, and can be edited by any-
one with a passing knowledge of HTML.

THE TEXTPATTERN MODEL

153

6

8326CH06.qxd 4/17/07 6:02 PM Page 153

For thousands of years, scientists thought people were composed of bones, muscles, and
organs. Then, in 1953, James Watson and Francis Crick opened the world’s eyes to DNA,
the final microscopic element that ties everything together. Looking at the grand semantic
Web picture more closely, you also find a less-obvious inner layer as well. Folded into the
structural HTML is the content layer that quietly ties the other layers together—the
“DNA” of the web pages.

The current Web model, as packaged and promoted by the World Wide Web Consortium
(W3C), does not allow—and never has allowed—a means to fundamentally separate con-
tent from structure, which is why the concept might seem alien at first. Since HTML 1.0,
text and markup have been intrinsically woven together into one file. The primary content
is tangled up with all kinds of markup—from the navigation, to the copyright in the footer,
to the metadata that isn’t even visible in a browser window.

What’s the point?
At the end of the day, the goal of separating content from structure is easier site mainte-
nance. Years ago, if you wanted to make the body text blue instead of black, you had to
manually edit, save, and reupload every page. Today, editing a single line in a CSS file can
change 100,000 pages in one-half second because that visual information—the presenta-
tion layer—has been outsourced to a style sheet. The process is now a hundredfold more
efficient.

If you want to make a major structural change to your layout (for example, adding a third
column to the body or a new button to the navigation), you still have to edit, save, and
reupload every page, just like before. The solution is to remove the content and leave only
the HTML skeleton. When those bones can be outsourced into HTML templates, just as the
visual information is outsourced to a CSS file, those structural changes become as easy and
fast as presentational changes.

Unfortunately, separating content and structure requires third-party intervention. Content
management software is used to administer raw content separately from HTML templates
and then assemble these elements into a single HTML page for the end user’s browser to
render.

The Textpattern semantic model
Textpattern is a content management system (CMS) that enables the web developer to
control the melding of content and structure on a very granular, tightly controlled, and
completely customizable level. To accomplish this, Textpattern adheres to its own seman-
tic architecture. As you can see in Figure 6-1, everything revolves around the explicit man-
agement of content and structure and then weaving them back together for the visitor’s
browser.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

154

8326CH06.qxd 4/17/07 6:02 PM Page 154

Figure 6-1. Textpattern’s semantic model separates the content and structure of a page and then
weaves them together with forms.

The content is accessed through the Content tab in the Admin interface. All text articles,
images, files, and other content are housed in this area and are organized by categories,
which are metadata-like in their capability to organize content. You’ll learn more about
content in Chapter 7.

The structure layer, controlled in the Presentation tab, is a bit more complex because sec-
tions (which are the broad site dividers) work with pages (which act as the actual tem-
plates) in a symbiotic relationship. Pages use forms—which are snippets of code—to pull
content from the content layer before the template is output as a web page. (This is
covered in detail in Chapters 8 and 9.)

The building blocks

Most Textpattern development is done in the Content and Presentation tabs. These tabs
and their technical functionality are described in depth in Part 2 of this book, but let’s
review the critical building blocks from Figure 6-1.

Categories
Categories help group content meaningfully. Figure 6-2 shows how Textpattern employs
categories for articles, links, images, and files, which are critical to the organization of a
site, no matter what size. For instance, if you set up a blog about food courts in malls, your
categories might include “pretzel stands,” “national fast-food chains,” “pizza,” and “ice
cream shops.” Subsequent posts would be linked to one or more categories. After the
content is attributed to these semantic buckets, that information can be used in a myriad
of ways, such as providing a list of relevant articles or creating a sitemap organized by cat-
egory (or even designing category-specific landing pages).

THE TEXTPATTERN MODEL

155

6

8326CH06.qxd 4/17/07 6:02 PM Page 155

Figure 6-2. Textpattern enables you to organize articles, links, images, and files with categories.

Articles
Articles are where the bulk of the content resides. An article can be thought of as a singu-
lar, complete page of content, such as a blog post, corporate “about us” page, catalog
entry, or any other unique block of content that can exist on a single page. Every article
has a multitude of data attached to it: categories and section attributions, custom data
fields, timestamps, URL information, and more. There are hundreds of tags and plugins
designed to parse, display, and organize an article’s data.

Sections
Whereas categories are the semantic cataloging of content, sections serve as the broad
structural site divisions. Sections mimic traditional directories on a server. In the blog
about mall food courts, there might be one section called blog, in which all the posts
are stored, and another called contact, in which visitors can contact the author. These
sections would be represented by their own URLs: www.mallfoodcourt.com/blog and
www.mallfoodcourt.com/contact, respectively.

Pages
Pages are the ground floor of your structural templates and the foundation for forms to
interact with content. Pages are essentially blank canvases and are amazingly flexible. A
single page can simultaneously determine the output of a landing page, an individual arti-
cle page, or even search results. Textpattern requires every section be linked to a page; this
allows it to know what to display when the user lands on a web page located within a
section. As an example, you might have a section called contact and link it to a page
called contact_foodcourt; when the user lands on the contact web page, they see the
template defined in contact_foodcourt.

Forms
If articles are the building blocks of the site, and pages act as the foundation on which a
template is built, forms act as the cement that binds everything together—the decisive
ingredient that seamlessly weaves together the content and structure layers. Forms are the
most complex and most powerful components of Textpattern. They house the majority of
the markup and are largely responsible for the system’s extensible, flexible architecture.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

156

8326CH06.qxd 4/17/07 6:02 PM Page 156

The tag language

The Textpattern tag system mimics the structure and rules of well-formed XML, the most
widely employed Web Standard. This has several advantages. Perhaps most importantly, it
makes the code easy to understand. Once developers learn a few house rules, they can
jump in and create, tweak, and delete segments of Textpattern code with confidence.
Many CMSs require the author to learn a complete programming language such as PHP or
Perl to make even the most rudimentary alterations. Textpattern is nowhere near as
complex.

By following an XML-like structure, all tags must close or be self-closing, and tags—just
like the HTML—must follow a properly nested order. This ensures that there is little room
for questionable code, and Textpattern takes advantage of the consistent logic to render
pages as intended.

Textpattern’s tags are also written in plain, readable syntax. For instance, you might see
this on any given Textpattern site:

<txp:if_individual_article>
<txp:article form="article_full" />

</txp:if_individual_article>

In this example, you tell Textpattern the following: If the web page is rendering an individ-
ual article such as a blog entry, render that article using the form article_full. It is diffi-
cult to imagine writing easier code; tags are given human-readable names, and their
variables are enclosed in natural-language attributes inside the tag. Notice that the
<txp:if_individual_article> and <txp:article /> tags are both properly closed. Like
XML, not adhering to this rule prevents a file from working.

Knowledge portability
A key advantage of TXP is “knowledge portability.” Because the language is simple and the
architecture open to almost any configuration, the concepts in Part 3, even those illus-
trated by the following test site, can be easily applied to your own web project. In fact,
once a fundamental understanding of the Textpattern semantic model is achieved, the
ideas and principles can be applied to a host of development hurdles.

The testing ground: Buzzbomb
The beauty of Textpattern is that it supports just about any kind of site you want to build—
a simple blog, a website for a sports team, a church site, a company’s corporate site, or
anything else you can think of. The architecture was designed to accommodate almost any
idea. Other contemporary (and more well-known) development platforms are designed to
be blogging software first and CMSs second; in this case, blogging is just an easy applica-
tion of a greater system.

THE TEXTPATTERN MODEL

157

6

8326CH06.qxd 4/17/07 6:02 PM Page 157

Now that you know about the semantic model and how Textpattern separates the content
and structure layers for easier development, you can confidently move forward in building
a site. Part 3 of Textpattern Design and Development Solutions covers everything you need
to build a basic website using TXP. In fact, you will develop a site for the fictional punk
band Buzzbomb to help work through the concepts and code. (You can see a preview of
the Buzzbomb home page in Figure 6-3.)

Figure 6-3. The band’s home page

The installation will be a testing ground for all the major building blocks of a simple
Textpattern site. You’ll learn the following:

How categories affect the organization of content, how to create them, and how to
exploit their power for your site.

How to create, modify, and use articles for everything from blog posts to landing
pages to customized metadata.

How to create and edit sections and how to link them to pages.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

158

8326CH06.qxd 4/17/07 6:02 PM Page 158

How to turn blank pages into powerful, extensible templates using the Textpattern
tag language, including conditional statements.

How to use forms for building fast-loading, easily managed sites.

You’ll set up a blog (the “BuzzBlog”) with comments and an archive of past posts, a basic
contact page, a terms of use page, a photo gallery, customized error pages, and more.
You’ll use categories, sections, forms, custom fields, conditional arguments, and plugins to
help illustrate the grand Textpattern architecture, and how the four layers of the semantic
Web interact with the software’s structure. In short, you’ll learn how Textpattern works by
example.

Summary
The four-layer model of the Web can be truly achieved only with a CMS because there is
no easy way to natively separate content and structure without the assistance of server-
side software. Textpattern’s specialty is the elegant and extensible division, management,
and assemblage of content and structure, from a user-friendly interface for adding con-
tent to a functionally deep back end for building templates. This will become evident as
the rest of the book unfolds and as you go through the development process of a band
website.

THE TEXTPATTERN MODEL

159

6

8326CH06.qxd 4/17/07 6:02 PM Page 159

8326CH07.qxd 4/17/07 6:01 PM Page 160

7 CREATING THE CONTENT:
CATEGORIES AND ARTICLES

8326CH07.qxd 4/17/07 6:01 PM Page 161

The Content tab in Textpattern is where all content generation gets done. When web
administrators dole out access to the TXP interface, it’s common for writers to have access
only to this section because any significant content updates or additions can be accom-
plished within a few screens, as seen in Figures 7-1 and 7-2. In the four-layer model of the
semantic Web discussed in Chapter 6, everything related to the generation of the Content
layer is controlled here.

Figure 7-1. The Content tab as it appears to a Textpattern admin

Figure 7-2. The Content tab as it appears to people with Staff Writer status (they cannot access the
other tabs to make template changes)

The Content tab has seven subsidiary tabs: Categories, Write, Articles, Images, Files, Links,
and Comments. The Write, Images, Files, and Links tabs are for generating content. You can
add, edit, or delete any piece of a site’s content from one of these pages. Categories
administers the categories for the four previous tabs, Articles simply presents a list of all
articles generated from the Write tab, and Comments displays all visitor comments left on
your site.

Although this chapter will also touch on Images and Links, it will concentrate on the
Categories and Write tabs. They provide the deepest levels of functionality and represent
the bulk of content generation and organization on most Textpattern sites.

Categories
A category is the Textpattern way of organizing content from a semantic point of view.
The Categories tab enables you to control the categories of all the Textpattern content
types (articles, links, images, and files). These categories can be named whatever you want
as long as they provide organizational value to your site’s bucket of content.

Creating a category

Creating a category is very simple. After navigating to the Categories tab, you see an
overview of all your categories in the site for articles, links, images, and files, as seen in
Figure 7-3. To create a new category, simply enter the name into the field at the top of the
appropriate column; then click Create. That’s it. The page will refresh and you’ll see your
new category appear in the list.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

162

8326CH07.qxd 4/17/07 6:01 PM Page 162

Figure 7-3. The Categories tab shows all the categories of the site, including articles, links, images,
and files.

Categories vs. sections

The difference between categories and sections in Textpattern can be confusing at first.
Think of sections as broad site dividers like physical folders on the server that break apart
the site’s architecture. Every article must be attributed a section. By contrast, categories
are not required; they exist purely for content organization that might or might not relate
to the physical structure of the site.

For instance, in the Buzzbomb site we created three categories for the band’s releases:
Album, EP, and Single. Any article for the discography has one of those three categories
attached to it, but all of them fall into the Discography section. BuzzBlog, which has its
own section, also has a collection of categories such as Random Life, On Tour, and Release
News.

A single category can also describe a single article type that appears in multiple sections.
Consider a news site: the sections might be World News, Money, and Lifestyle. In Textpattern,
you might create a category called feature article that can be applied to full-length
articles appearing in any one of those larger areas.

It is worth repeating that a section attribution is required for every article, and an article
can be associated with only one section at a time. By contrast, an article can be linked with
up to two categories (or none if not needed). A section containing only one “sticky”
article, such as your site’s disclaimer or the home page’s static text, might not need a
category.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

163

7

8326CH07.qxd 4/17/07 6:01 PM Page 163

Multiple categories vs. tagging

Different content management systems (CMSs) and blogging software have conflicting
nomenclature when it comes to the back end. In Wordpress, for instance, an article can
have unlimited categories; a review of a restaurant might fall into these categories:
reviews, restaurants, New York City, Asian Fusion, and more. This type of taxonomy—in
which a piece of text is referenced by a host of keywords instead of falling neatly into a
single category—is often called tagging. Bloggers like having lots of categories at their dis-
posal because posts’ topics can be all over the map, making traditional organization struc-
tures inadequate.

Textpattern has caught some flack for allowing only two category associations per article
because people want to tag their content. There are two easy ways around this:

Use a plugin for multiple categories: Rob Sable has developed a plugin called
rss_unlimited_categories1 that enables unlimited category associations for arti-
cles. It replaces the dual drop-down menus with a multiselectable list, offering the
same functionality as Wordpress. This plugin also enables the output of the cate-
gories as a list or tag cloud.

Use Textpattern keywords: True tagging and multiple categories are not the
same. Tagging content is associating any word and phrase that fits the piece, not
picking from a predetermined list of possible categories. Textpattern enables tradi-
tional tagging functionality out of the box through the Keywords field on the Write
tab. A list of articles with similar keyword values can be output via a standard
<txp:article_custom /> tag. In this case, any articles containing the keyword
"reviews" will appear in the list:

<txp:article_custom form="yourform" keywords="reviews" />

Nesting

For organizational efficiency, Textpattern supports category nesting. Although TXP offers
unlimited nesting, it shows only eight levels of nested categories: the top-level category
and then seven hierarchical levels beneath it. This provides no production-level value, only
visual reference for the author. For instance, say you operate a music news site. You might
have the following categories:

reviews

albums

originals

re-releases

If you called a list of articles with the category reviews, Textpattern would return only a list
of articles explicitly linked to the category reviews. Any articles with a category of albums,
originals, or re-releases would be ignored, even if they fall within the parent reviews

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

164

1. www.wilshireone.com/textpattern-plugins/rss-unlimited-categories

8326CH07.qxd 4/17/07 6:01 PM Page 164

category. However, nested categories are recorded in the database as such, so the concept
provides an interesting programming hook for plugin developers. (In fact, one plugin was
written to generate a site navigation based solely on hierarchical categories.)

For the Buzzbomb site, you can see nested categories in action in Figure 7-3. Nesting them
like this provides no production value when developing the site, but helps to visually
organize the categories in Textpattern.

Category names vs. titles

From the Categories tab, clicking a category name brings up a subsidiary screen like the
one in Figure 7-4 with three fields: Article category name, Parent (drop-down menu for
nesting categories; see the previous discussion), and Article category title. The Article cate-
gory name field is used for database queries and URLs, and thus has hyphens; whereas the
Article category title is the human-readable version that would actually appear on a web
page if called by Textpattern.

Figure 7-4. The category options enable you to define a
category name and a category title.

Using the example in Figure 7-4, you might see Textpattern use the Article category name to
generate a URL such as buzzbomb.textpatternsolutions.com/buzzblog/?c=random-life.

In an article form, calling the category name is simple:

<txp:category />

But that code renders random-life. We have to explicitly instruct Textpattern to produce
the clean title:

<txp:category title="1" />

And that code produces Random Life. Keep in mind that the name and title are not bound
by the same words; the name could be random-life, while the title could be Random
Thoughts on Life, Death and Rock ‘n’ Roll.

Categories in URLs

Category names do not appear in any URL combination because they are for organizing
content, not dictating the site’s structure. This is a fine distinction. It is easy to think of
categories as “subsections,” so a URL such as yoursite.com/section/category/title is

CREATING THE CONTENT: CATEGORIES AND ARTICLES

165

7

8326CH07.qxd 4/17/07 6:01 PM Page 165

obvious. But this is not the way Textpattern is built. Categories serve the same role as meta
keywords: data for semantic organization.

Sections can be in a URL string because every article must have only one section, leaving
only one possible URL combination: yoursite.com/section/title. Think about articles
with more than one category: both yoursite.com/section/category1/title and
yoursite.com/section/category2/title would go to the same article, diluting the value
of permanent URLs. Take that idea for more than two categories—or worse, articles that
have been tagged with 20 keywords—and you immediately see the problem.

All this being said, the entire argument has one significant caveat: you can have category
landing pages. These URLs come in two forms, and neither is pretty.

Option 1: Database query string
Example: www.site.com/destinations/?c=hawaii. As you can see, even in clean URL
mode, TXP still requires a database query. In this case, the section is destinations and the
category is hawaii. (If you were running Textpattern in “messy URL” mode, the URL would
be: www.site.com/index.php?c=hawaii.)

You’re asking this, “Why the heck does the dumb ‘c’ and question mark thing have to be in
the URL? Why can’t I just have a nice clean URL with the category name?” Good question.
Because Textpattern uses the format of www.site.com/section/title, it can’t use the for-
mat of www.site.com/section/category because if an article title and category name
were the same, the URL would try to resolve to two different places. Remember what you
learned in high school physics: a single object cannot occupy two places at the same time
or the whole space-time continuum will implode, ending existence as we know it.

Option 2: The painfully obvious URL
Example: www.site.com/category/hawaii/. Here, Textpattern inserts the word category
into the URL before actually referencing the category title hawaii. The section name is left
out completely.

Articles
An article in Textpattern is any piece of text that is dynamically displayed on the site.
Except for rare exceptions, one article equals one web page, regardless of length. The CMS
provides a myriad of options and fields for each article, which allows for a fairly wide array
of customization and applications. For instance, one article in your site might be a single
paragraph to introduce a section; another might be a 1,000-word essay buried under a
tangle of submenus; another might comprise your privacy policy page. Any piece of text
can be controlled with an article. Using Figure 7-5 as the launch pad, let’s explore the
interface.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

166

8326CH07.qxd 4/17/07 6:01 PM Page 166

Figure 7-5. An entry in the Buzzbomb blog uses many of the fields available on the Write tab.

Article title

This first field on the article page is the most important field for an article. In fact, it’s
the only field that is required. An article can have nothing else—not even content in the
body—but it must have a title because the title drives the URL and provides the unique
“hook” for the Textpattern system to locate, organize, and display an article in a web page.

When Textpattern generates a URL from the title field, it strips out all characters that are
not lowercase alphanumeric (0–9 or a–z), so the URL for the article Viva La Baltimore looks
like this: buzzbomb.textpatternsolutions.com/buzzblog/viva-la-baltimore.

Customizing the URL
One of Textpattern’s most useful (and lesser-known) features is its capability to customize
an article’s URL string. While the URL of the article is initially generated from the title field
when you click Publish for the first time, simply opening Advanced Options on the left
reveals a field called URL-only title on the bottom. Similar to a category name and title,
these two fields do not have to contain the same content—Textpattern has already tied
them together. This field accepts any characters legal in a URL string. For instance, the pre-
vious article’s URL could be one of any of the following:

CREATING THE CONTENT: CATEGORIES AND ARTICLES

167

7

8326CH07.qxd 4/17/07 6:01 PM Page 167

viva-la-baltimore

vivalabaltimore

viva_la_baltimore

baltimore

Generally, it’s best to keep the URL as close to the article’s title as possible and to use
hyphens, not underscores. Hyphens are not only more legible in human scanning, but
search engines also recognize them as spaces, whereas underscores are interpreted as full
stops.

In addition, Textpattern forbids any two articles from sharing the same URL. You might
have two articles titled Site Update, but their URL values must be different—for instance,
site-update-oct-2006 and site-update-apr-2007. As you can see from the error mes-
sage shown in Figure 7-6, Textpattern tells you when you’ve infringed on another article.

Figure 7-6. Textpattern will warn you when two articles share the same URL.

Body and Excerpt

The main content of your articles lives in the Body and Excerpt fields. While Textpattern
offers additional places to store data (keywords, custom fields, and so on), the Body and
Excerpt fields are designed to hold the long guts of your pages. Functionally, they are the
same. You could write a 1,000-word blog entry in the excerpt and a 100-word summary in
the body; from Textpattern’s point of view, the fields are identical twins separated only by
their labels.

The Body and Excerpt fields are very versatile in the type of content they can hold:

Entering plain text makes it easy for technically less-savvy authors to write, since
Textile parses the plain text into HTML. This is probably the most common content
in Textpattern sites. As you can see in Figure 7-7, TXP even provides a means of
previewing both the HTML and final output for quality control. Chapter 4 covers
Textile in depth.

For those requiring more finite control, Textile can be turned off for authors want-
ing to write their own HTML. This can be especially valuable if the content of an
article becomes laden with complex tables, code examples, or other tag-heavy
applications beyond the scope of Textile.

For even more flexibility, you can write both plain text and HTML into the same
article; Textile will leave your HTML alone, but still work its magic on the plain text.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

168

8326CH07.qxd 4/17/07 6:01 PM Page 168

Certain nonarticle Textpattern tags can be parsed directly from an article field. For
instance, Rob Sable’s rss_google_map plugin2 generates a Google map based on
values entered into the plugin, and the actual tag sits right inside an article’s Body or
Excerpt field. You could also use standard TXP tags such as <txp:output_form />
to pull external material right into your passage of text.

Finally, you can execute PHP code right from an article, which allows for the ulti-
mate in flexibility because several advanced applications—such as a shopping cart,
forum, or complementary CMS—might require advanced custom programming to
integrate with Textpattern. Since running server-side code might present a security
risk in a multiauthor environment, the site admin can disable this capability in the
Advanced Preferences area of the Admin tab.

Status

One of the more unique features of Textpattern is the capability to give articles different
status levels. It might seem obvious to have two different states—on and off—but
Textpattern offers a deeper level of control by providing additional options in how articles
are handled.

Draft, Pending, and Live
Conceptually, these different status levels try to approximate the traditional workflow of a
printed publication such as a newspaper or magazine. In those environments, there are
many writers, editors, and administrators; and pieces fly from one desk to another, getting
reviewed and edited before finally going to press. During that workflow, the article’s status
level also changes—starting at Draft and then moving to Pending before an editor gives the
final okay and the article goes Live.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

169

7

Figure 7-7. Textpattern provides three different modes of viewing your content: the editable fields, the HTML
markup, and a preview of the final output.

2. www.wilshireone.com/textpattern-plugins/rss-google-map

8326CH07.qxd 4/17/07 6:01 PM Page 169

By default, every new article is set to Live, but there are many times when you won’t finish
the article in one sitting, so you mark it as Draft. This keeps the article from appearing on
the website, but saves the content for later editing. Draft acts as its name would indicate:
as a testing ground for reviewing and revising before pushing the content to the rest of
the world.

Realistically, few Textpattern-driven sites will have a workflow as complex as a newspaper,
and a status level such as Pending might never be used. It is best employed when multiple
writers need to version a piece of text, and appropriate user accounts and their corre-
sponding permissions are used to control what content goes online.

Finally, an article set to Live is exactly that—live on the website. It can still be edited and its
status can always be demoted to Draft or something similar.

Hidden
An article with the status of Hidden becomes exactly that—invisible. Other user accounts
(even freelancers) can see Hidden articles from other authors, but all traces of the content
are taken offline. Functionally, it is identical to Draft. The value comes when multiple arti-
cles are in the editorial queue, and the Draft status actually means something different
from Hidden in the site’s workflow.

Sticky
Sometimes, you need to have text on your site that deviates from the normal article flow.
For instance, in a blog, you might have a short blurb introducing the archive page; in a cor-
porate site divided by sections, you might need sectional landing pages. In other words, a
piece of content anchored in place that won’t expire or fall behind newer articles. The
Sticky status enables you to “stick” a piece of content to whatever you want. For instance,
take a look at Figure 7-8.

As you can see, the sticky article appears on the sectional landing page outside the list of
normal articles with a Live status. Articles with a Sticky status become their own rogue con-
tent that has to be called deliberately and specifically from an article tag using the status
attribute. The example might use the following slice of Textpattern code:

<txp:article status="sticky" form="sticky_article" />
<txp:article form="list_of_articles" />

In a multiauthor site, as in any networked environment, it is often necessary to
control the level of access a user or group of users retains in the production
situation. Each author is given a level of access based on job responsibility. By
default, Textpattern offers these titles—Publisher, Manager, Copy Editor, Staff
Writer, Freelancer, Designer, and None—each with different levels of editorial
power. For more information, refer to “Users” in Chapter 3.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

170

8326CH07.qxd 4/17/07 6:01 PM Page 170

The logic is simple: show the sticky text attributed to that section followed by the list of
normal articles. Again, you must tell Textpattern to pull the sticky article with the status
attribute.

Figure 7-8. In a blog environment, a sticky article might be used to introduce the archive page.

Sections and categories

You attach the section and categories to the article on the Write tab. We’ll cover sections
in depth in the next chapter, but for now, remember that every article requires a section
for Textpattern to properly triangulate it with the rest of the content. In Figure 7-9, the
post “Viva la Baltimore” appears in the buzzblog section, but falls into both the On Tour and
BuzzBlog categories.

Categories, which we covered at the beginning of this chapter, are optional. They provide
a second, purely semantic organizational level that you might or might not need. A small
site with only a few pages could very well do without categories, but any large-scale con-
tent, especially content divided up into many small pieces, could benefit strongly from the
additional management that categories offer.

Figure 7-9. Every article must have one section
applied with the option of additional categories.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

171

7

8326CH07.qxd 4/17/07 6:01 PM Page 171

Keywords

In Textpattern, keywords were initially conceived to tie relevant articles together, almost
like a crude tagging system. As the product matured, the content was opened up to more
practical uses, and the field is now a completely open value whose subject matter can be
used to accomplish all sorts of tasks.

The first and most obvious use is to employ keywords for metadata use. Since the value is
pulled in a single tag (and has no attributes), the code is very simple:

<meta name="keywords" content="<txp:keywords />" />

We’ll cover creating a full array of custom metadata later in the book, but this is one of the
first steps. The TXP development crew has given us another tag called <txp:meta_
keywords /> that creates the exact output as the previous example, but in one succinct bit
of markup:

<txp:meta_keywords />

Fortunately for developers using Textpattern, an article’s keywords are not limited to
metadata use. Like custom fields, the value of the Keywords field can be used as article
triggers and filters. For example, suppose that you ran a blog about your local music scene.
Every time you posted an entry, you threw in a couple of keywords: any bands mentioned
in the post, the name of the venue, and any local celebrities who might have been
involved. Some time later, you write a feature-length story about Buzzbomb, the rising star
in the local scene. You know it will be linked to by a lot of other sites and you want to take
advantage of that traffic by pointing readers to past articles you’ve written about
Buzzbomb. At the end the article, you might plug this into your article body:

<ul class="relatedarticles">
<txp:article_custom form="quicklinks" keywords="Buzzbomb" limit="5" />

The quicklinks form (set to be an article type) might look like this:

<txp:permlink><txp:title /></txp:permlink> (<txp:posted />)

And the resulting output would pull the five most recent articles with the keyword
Buzzbomb into an unordered list at the end of your feature article. The final HTML output
would be the following:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

172

8326CH07.qxd 4/17/07 6:01 PM Page 172

<ul class="relatedarticles">
Buzzbomb Rocks the Casbah (8 October 2006)
Too Good to Name Influences? å

(21 September 2006)
The Man Behind the Buzzbomb Magic å

(9 July 2006)
Buzzbomb Announces New Album: Monkey Funk å

(1 July 2006)
Are We Ever Going to Get a New Album? å

 (28 June 2006)

This saves you the trouble of manually hunting down the last five articles you wrote about
the band and provides you with a snippet of code you can reuse over and over—just
change the keyword and you have an instant list of related material. Coke Harrington, a
prolific Textpattern plugin writer, created the plugin chh_related_articles3 to automate
this process. It searches all articles for related keywords (or custom fields) and outputs a
list of related material.

Images, Files, and Links
Our trip through the Content tab would not be complete without exploring the three other
tabs that supply Textpattern with content: Images, Files, and Links. In theory, this is where
all nonarticle content resides.

Images

The Images tab is used to upload any type of image file related to the site, including sup-
porting graphics for articles as well as images used in the design of the site. Since
Textpattern gives you three different ways to call the image—Textile, Textpattern, and
plain HTML—the tool is a powerful repository. Let’s walk through the process.

The first thing to do is set your image categories from the Categories tab. TXP gives you
only one predetermined category: Site Design, which you might or might not wish to
change or even keep. Once that is settled, return to the Images tab and use the Upload file
field to find your image. For the Buzzbomb site, we wrote a blog post on a show in
Baltimore and want to upload a picture to support the story. We use the Upload image field
to find the picture and then click Upload. This brings up the second screen, in which we
can edit the image’s details, as seen in Figure 7-10.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

173

7

3. www.cokesque.com/code/117/chhrelatedarticles

8326CH07.qxd 4/17/07 6:01 PM Page 173

Figure 7-10. There are several important details that can be
fleshed out after uploading an image.

In this second screen, several key details need to be fleshed out. First (and most impor-
tant), write some short alternate text for the image if it’s any kind of photo, logo, or other
primary graphic. This is the text that appears in the alt attribute of an HTML image tag. If
it’s any type of image whose loss will not affect a reader’s understanding of the site (such
as a minor background image or a spacer pixel), leave the field blank.

Second, pick a category for the image. While this is more important for photo blogs or
other image-heavy sites when you need to organize using categories, it never hurts to have
that metadata attached to your files.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

174

8326CH07.qxd 4/17/07 6:01 PM Page 174

Textpattern also enables you to create a thumbnail of the image on the fly. Although you
could upload your own thumbnail, simply entering a height or width and clicking Create
will do it for you.

After all changes are made, press Save, and Textpattern returns to the index of uploaded
images, as shown in Figure 7-11.

Figure 7-11. Textpattern shows you the thumbnail of the image and different tags for
using the image.

This screen provides three ways to call the image on your site: Textile code, a Textpattern
tag, or a normal HTML image tag. It’s important to remember that TXP renames your
graphics on the server, so although you uploaded baltimore.jpg, the name on the server
is actually 3.jpg, which corresponds to the ID number of the image. Textpattern ensures
that no two images ever have the same name.

Up to version 4.0.3 of Textpattern, clicking a selection under Tags would launch a pop-up
window with code. Version 4.0.4 improved this system. Now, clicking any selection under
Tags brings up a new browser window with a richer menu of options, as seen in Figure 7-12.

Figure 7-12. When a selection is clicked in version 4.0.4, Textpattern
launches a new page with a tag-building menu for images.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

175

7

8326CH07.qxd 4/17/07 6:01 PM Page 175

Textile
Choosing Textile from the Type drop-down menu produces the following code:

!http://www.textpatternsolutions.com/Buzzbomb/images/3.jpg å

(Baltimore Waterfront)!

Because Textile tags do not allow any advanced attributes, they are best left for quick
image calls in an article’s body. In fact, they can be used only where Textile is parsed—the
article body, excerpt, or a comment—so their usefulness is limited.

Textpattern
When Textpattern is picked from the Type drop-down menu, the following code appears:

<txp:image class="storyphoto" html_id="baltimorepic" id="3" å

style="margin: 0" wraptag="div" />

As you can see, a Textpattern tag allows for all of the attributes available from the tag gen-
eration menu. A Textpattern tag can be called from pages, forms, articles, and more. The
versatility and brevity of the tag makes it a popular development choice.

XHTML
Finally, choosing XHTML from the drop-down menu renders the following:

<div><img src="http://www.textpatternsolutions.com/Buzzbomb/ å

images/3.jpg" width="300" height="225" alt="Baltimore Waterfront" å

id="baltimorepic" class="storyphoto" style="margin: 0" /></div>

This is the full-blown HTML call that can be manually tweaked to the finest nuance. For
instance, you might need to apply a class to the wrap tag or adjust the alt attribute text in
one instance—options simply not available from a Textile or Textpattern tag. In addition,
you can use the image path to call images in the Textpattern repository from your CSS
files:

.header { background: url(/Buzzbomb/images/3.jpg) 0 0 no repeat; }

Files

The Files tab is intended for downloadable files. Just about anything is accepted: music
files, big image files, PDFs, Word documents, and so on. The functionality is similar to the
Images tab; there is an index page of available files and a place to upload new ones.
Uploading a new file brings up a small screen of options (see Figure 7-13).

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

176

8326CH07.qxd 4/17/07 6:01 PM Page 176

Figure 7-13. Textpattern offers a minor set of options for uploading files.

Even though the options might seem limited, Textpattern provides no fewer than eleven
unique tags for organizing and rendering downloadable files (compared with just three for
images). It is important to accurately fill in this information because all of it can be parsed
onscreen, from the file category (<txp:file_download_category />) and description
(<txp:file_download_description />), to the date it was created (<txp:file_download_
created />), to the number of downloads since its release (<txp:file_download_
downloads />).

Similar to images, Textpattern gives each file a unique ID number. The difference is that
the CMS does not actually rename the file as it does with images, but instead creates a
unique redirect based on the ID. For instance, if we build a Textile, Textpattern, or XHTML
tag based on the previous Buzzbomb desktop background, the parsed HTML would pro-
duce a URL like this:

http://www.textpatternsolutions.com/Buzzbomb/file_download/2

When loaded, it would prompt the browser to download the file Buzzbomb_desktop.jpg.
The integrity of the file name remains.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

177

7

8326CH07.qxd 4/17/07 6:01 PM Page 177

Links

The idea behind links comes from the popular sidebar construct of blogs, in which authors
can create a list of links (or blogrolls) to their favorite sites. While the construct does not
present a tremendous amount of flexibility or creative room beyond its intended use, it is
excellent for what it sets out to accomplish and can be stretched—in a pinch—for other
uses. The interface is simple enough, as shown in Figure 7-14.

Figure 7-14. The interface for the Links tab

The Sort Value enables you to control the order in which the links appear by using
alphanumeric values. TextBook4 provides the best example: 1, 10, 100, 101, 11, 1B, 2, A, B.
If nothing is entered, the field adopts the value of the title after you press Save, but this
can be edited afterward if you want to sort articles by a certain value.

Title, URL, Link category, and Description are all self-explanatory and can be called with a host
of Textpattern tags, including <txp:linklist />, <txp:link />, <txp:linkdesctitle />,
<txp:link_name />, <txp:link_url />, and more. As a simple example, in the right col-
umn of the Buzzbomb site, we added a small list of our favorite bands. Here is the small bit
of code to output the links:

<txp:linklist category="Friends" sort="linkname desc" å

wraptag="ul" form="plainlinks" />

Textpattern is pulling all links from the Friends category and then sorting them alphabet-
ically. The list is being wrapped in a tag, which means that the form plainlinks
wraps each link in an tag, like this:

<txp:linkdesctitle />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

178

4. www.textpattern.net/wiki/index.php?title=Links_Subtab

8326CH07.qxd 4/17/07 6:01 PM Page 178

The <txp:linkdesctitle /> title is an efficient choice because it’s a single tag that not
only generates the <a> tag but also the anchor text (using the link’s title) and the content
for the title attribute (using the link’s description). In the end, the final output would be
the following:

<a href="http://www.m-tronic.com/" title="Seriously some of the å

best dark drum'n'bass / industrial / mental music ever created."> å

Kaltesglas

Summary
This chapter covered the elements of creating content for your Textpattern site. You will
spend most of your time on the Write tab, plugging away at content, but the Images, Files,
and Links tabs also provide an avenue of supplementary content that can be called into
your site in a variety of ways. The next chapter will cover the foundational elements of
structure, from templates to stylesheets, and then tie them together onto a single page.

CREATING THE CONTENT: CATEGORIES AND ARTICLES

179

7

8326CH07.qxd 4/17/07 6:01 PM Page 179

8326CH08.qxd 4/17/07 6:00 PM Page 180

8 CUSTOMIZING THE PRESENTATION:
SECTIONS, PAGES, FORMS, AND

STYLE

8326CH08.qxd 4/17/07 6:00 PM Page 181

The Presentation tab of the Textpattern interface (see Figure 8-1) is the central brain of the
system, in which the threads of content are sewn into the fabric of structure. After build-
ing the broad sections of a site, you use forms to weave a web between articles and pages,
crafting the output with an extensive library of tags and plugins.

Figure 8-1. The Presentation tab has four main tabs for creating templates and stylesheets.

In a multiauthor environment, staff writers and freelancers have no access to the Presentation
tab, and those attributed with Designer status have access to only the Presentation tab
because any design-related changes, from template changes to Cascading Style Sheet
(CSS) edits, happen within this screen.

The Textpattern developer is given three building blocks in which to craft HTML
templates—Sections, Pages, and Forms—with another tab (Style) for stylesheets to control
the cosmetic presentation. The process of building an HTML page out of Textpattern
involves all four pieces.

Since each article must be attributed to only one section, Textpattern must first identify an
article’s section to render the content correctly. Each section is tied to a single chosen
page. A page is a blank canvas that can have just about any type of code, but at the very
minimum, a page possesses numerous calls to forms whose job is to actually pull the
requested content from the article into the template. Finally, Textpattern compiles
the page—pulling in all the content referenced by forms and plugins—and generates the
HTML (see Figure 8-2) that is sent to the browser.

Figure 8-2. Textpattern figures out the correct section and compiles the final HTML
for output by using that section’s attributed page.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

182

8326CH08.qxd 4/17/07 6:00 PM Page 182

When creating your site’s templates, there are several key steps in working with these
components. You will learn about each step in more detail throughout the chapter by
doing the following:

1. Build the HTML/CSS design outside of Textpattern before building the functional
templates inside the CMS.

2. Decide on the site’s major sections and create them within the Sections tab. The
sections usually (but not always) map to the main navigation.

3. Convert raw HTML into a Textpattern template using pages and forms. This step
includes using article-type forms to pull in some text you entered in the Content tab.

4. Tie the page to the proper section.

5. Duplicate the page as needed and customize the code to fit other sections after
finalizing the first template.

Build the HTML and CSS first
It’s much easier to simply build the design and corresponding HTML and CSS outside of
Textpattern and then convert the static markup over to TXP templates. While the CMS’s
interface is elegant and fast, it’s much slower than crafting a plain HTML and CSS mockup
right on your hard drive and testing locally.

Traditionally, web designers create their designs in Photoshop and Illustrator, and then
“slice” the designs into HTML. The Buzzbomb site is no different. The home page design
was created in Photoshop, and was chopped up into web-ready files, including a plain
HTML file and corresponding stylesheet. Figure 8-3 shows a snippet of the HTML for the
Buzzbomb home page before it was moved into Textpattern. You’ll examine this code in its
entirety throughout the rest of the chapter.

It is critical to plan and build as many HTML prototypes as you can before editing tem-
plates inside Textpattern. Think about all the different web pages you’ll need and the visual
widgets appearing on each. The more planning you do before mucking about the CMS, the
smoother the development process will unfold. In any given Textpattern site, you might
have the following:

Article display

Comment display

Comment submission form

Article archive

Photo galleries

Search results

File downloads

Sectional landing pages

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

183

8

8326CH08.qxd 4/17/07 6:00 PM Page 183

Figure 8-3. Before even opening Textpattern, the Buzzbomb home page was fully realized in plain
HTML and CSS outside the content management system (CMS).

Create your sections
Chapter 7 covered the major differences between sections and categories. To recap, think
of sections as file folders on a web server holding different buckets of content—physical
partitions segregating stacks of articles. Categories, by contrast, are semantic values
placed on articles to help give the content meta-like meaning. As discussed previously, an
article must be attributed a section, whereas categorization is purely optional, in the same
way a traditional HTML page must sit somewhere on the server, but might or might not
have any meta information in its markup.

It’s important to consider the architecture of your site from the beginning. While sections
are easily created, edited, and deleted, it makes development much easier when you have
a final product mapped out and can start building toward that goal instead of trying to
generate a site’s structure while knee-deep in TXP details. It would be like trying to deter-
mine the carpet color of a skyscraper before deciding how many floors it will have.

Sections commonly align with a site’s main navigation. In the case of the Buzzbomb site,
the sections reflect the primary links in the header: Home, BuzzBlog, Tunes, Pics, Live, and
Contact. This is not always the case, and is certainly not required by any means, but it can
make development easier when there is a clear correlation.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

184

8326CH08.qxd 4/17/07 6:00 PM Page 184

Chapter 6 discussed Textpattern’s capability to support many different site architectures.
Following are a few examples of sections that might exist in different types of websites.

Basic blog:

Home (default)

Post Archive

Contact

Corporate website:

Home (default)

About Us

News and Press Releases

Products and Solutions

Contact Us

Photography portfolio:

Home (default)

Latest Photos

Portfolio

Contact Us

Newspaper:

Home (default)

Local

Sports

Weather

Entertainment

For the sample site for Buzzbomb, we’ll go with the following sections:

Home (default)

BuzzBlog (the band’s blog)

Tunes (the discography)

Pics (a few pictures of the band)

Live (some tour dates)

Contact

Let’s review the Sections tab. Although the options are few, they wield tremendous control
over your templates.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

185

8

8326CH08.qxd 4/17/07 6:00 PM Page 185

Creating a new section

To create a new section, simply enter a name in the topmost field and click the Create but-
ton. The section and its options are generated and placed in alphabetical order, so you
might need to scroll down a bit. For example, say you want to create a section for the
Buzzbomb site called Pics, in which you anticipate having a collection of the most recent
photos. After clicking Create, you see the options shown in Figure 8-4.

Figure 8-4. When a section is created, you are presented
with the default options.

The concept behind section names and titles is the same as categories, covered in Chapter
7. The name is referenced by the Textpattern system and is used for database queries and
generating URLs. The title, by contrast, is the human-readable version intended for screen
display. When using the <txp:section /> tag, Textpattern uses the name by default and
must be instructed to use the title. For instance, suppose the following code was in this form:

You have navigated to the <txp:section /> section.

The code produces the following:

You have navigated to the pics section.

Instead, you need to tell Textpattern to use the title instead:

You have navigated to the <txp:section title="1" /> section.

That produces the following, which is more natural:

You have navigated to the Pics section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

186

8326CH08.qxd 4/17/07 6:00 PM Page 186

Filling in the options
Below the Section name and Section title in the section options, you’ll see two important
drop-down menus: Uses page and Uses style. After producing a template with a page and
forms, that page must be linked to the section in the first drop-down menu. This link is
critical to building a Textpattern site. In the preceding discussion, this linking process ful-
fills step 2 of how a called article ends up in HTML:

1. Textpattern looks to see what section is attributed to the article.

2. Textpattern then looks to see what page is linked to the section.

3. From that page, Textpattern builds the final HTML output.

When you create a new page under the Pages tab, this drop-down menu is automatically
updated. Sometimes you have only one page whose template works for every section.
However, you’re just as likely (probably more so for complex sites) to have a different
page for every section so every section can have its own unique design or structure.

The concept for attributing a style—that is, a CSS file—is not much different. You might
have one stylesheet that works wonderfully across every section, just as you might have a
different stylesheet for every section, depending on the design of the site. When you
create a new style under the Style tab, this drop-down menu is updated to reflect the new
options. Of course, this drop-down menu’s value is contingent upon whether you choose
to use Textpattern’s CSS editor. If you’re working with an external stylesheet, this option
does nothing.

Almost every native and plugin-based tag in Textpattern has attributes that con-
trol its output. Many of these attributes are binary, meaning they are positive or
negative, either on or off. Traditionally, binary information is rendered as 1/0, in
which the number 1 indicates that the value is true, and the zero indicates that
the value is not true. Unfortunately, a few Textpattern tags are inconsistent in the
way they determine a positive or negative value. Most use the 1/0 technique (as
with the previous <txp:section /> tag), but a few still use on/off or yes/no ter-
minology. Functionally, all three mean the same thing, but it can be confusing to
someone who hasn’t spent a lot of time in the CMS.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

187

8

8326CH08.qxd 4/17/07 6:00 PM Page 187

Choices, choices
The final options for each section are wrapped up in four radio buttons that define how a
section interacts with the rest of the site:

Selected by default? This option is simple enough. When checked, it becomes the
default choice when creating a new article. Only one section can have Yes checked
at any given time.

On front page? This option dictates whether content attributed to that section
should appear on the default landing page of the site. This might be confusing at
first, but consider a simple blog. You have a section called Blog that houses all your
daily posts, but you also have a section called Photo Album that is designed to
showcase your photography. You want your blog content to appear on the home
page, so you click Yes for that section. On the other hand, you want to keep your
photos regulated to a subsidiary section off the site’s landing page, so you click No
for the Photo Album section.

Syndicate? This option controls whether that section’s content is syndicated
through Textpattern’s generated RSS or Atom feed. Using the preceding example,
you might choose to syndicate both the Blog content and the Photo Album con-
tent, or just the Blog content.

Include in site search? This option is fairly self-explanatory. If there’s a section
whose content you do not want to appear in Textpattern’s search results, simply
click No.

Creating templates with pages
A page is the foundation of HTML templates—it is the place where the HTML and the text
meet before being output to a browser, the final merge of the content and structure sep-
aration discussed in Chapter 6. In Textpattern terms, it is the place where forms call the
articles’ content. It’s also where the CMS decides whether to render an article’s individual
web page, a section landing page, a 404 error page, or a search results page, all of which
can be controlled via tags in a single page. (For more information on building these multi-
ple templates into a single page, see Chapter 11.)

While the default Textpattern template leaves some clues as to how to start building your
template, it’s best to just start from scratch. Figure 8-5 shows what a clean TXP page looks
like.

Note that this does not affect how external search engines crawl your site. If
you want to hide content from Google, MSN, Yahoo!, and other commercial
spiders, you need a robots.txt1 file.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

188

1. Learn more about robots.txt files at SearchTools.com: www.searchtools.com/robots/
robots-txt.html

8326CH08.qxd 4/17/07 6:00 PM Page 188

Figure 8-5. A page in Textpattern is a completely blank canvas for creating HTML templates.

The middle field is just a big blank area for writing the HTML template, but you will rarely
see a blank page like this. In fact, the only way to create a new page is to duplicate an
existing one. (Since the page default is permanent, there will always be something to
duplicate.) This is done at the bottom of the browser window in the field to the right of
the Save button.

The right column is just a list of your pages, with a delete button to the right of each.
There is no limit to how many pages you can have. Different setups require a different
number of templates—simple Textpattern sites might only need one page; more-complex
sites might need dozens.

The left column is the developer’s toolbox. The main headers expand to reveal a variety of
Textpattern tags, from XML feeds and article tags to file downloads and meta information
(refer to Chapter 5 for more information).

The big copy and paste

Okay, so you have developed HTML and CSS outside the CMS and created your sections to
define the overall architecture. Life is good. The next step is to start creating the templates
to house the site’s content. This is not that hard—you’re not doing much more than
replacing dummy text in the HTML prototype with database queries to pull in dynamic
content.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

189

8

8326CH08.qxd 4/17/07 6:00 PM Page 189

First, you need to move the stylesheet and images over to the server. For simplicity and
speed, it’s usually more efficient to work through an FTP program for managing these
pieces of the site, especially during the rapid back-and-forth, tweak-and-check of early site
development. While you could build your site using Textpattern’s CSS editor and image
upload facility, it’s simply more effective to work with these files natively independent of
the back end.

At this point, you need to decide whether to create a test environment in TXP or make
changes right to the live site. If you have a local installation, this isn’t an issue. (See Chapter 2
for detailed instructions on creating a local installation.) But if you’re working on a live
server—especially on a site that relies on a current design—you need to create a testing
ground for development. In the case of Buzzbomb, you’re creating the template for the
home page, so you’ll create a page called homepage_test. Since the home page is pulling
content from the buzzblog section, you can link that section to the new test page, as
shown in Figure 8-6.

Figure 8-6. After creating a test page called homepage_test,
you link it to the buzzblog section.

After uploading the supporting image and stylesheet files and creating a test page, let’s
move on to the big copy and paste. You can take the entire prototype HTML file and copy
it right into the homepage_test Textpattern page (see Figure 8-7). After ensuring that the
paths to the CSS file and image directory are correct, click Save and conduct a quick test
of the page by loading the section’s URL (for instance, www.example.com/sectionname if
you’re using clean URLs; www.example.com/index.php?s=sectionname if you’re using
messy URLs) and see whether your new template is there. If all goes well, it will look
exactly like your original prototype.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

190

8326CH08.qxd 4/17/07 6:00 PM Page 190

Figure 8-7. The prototype HTML gets pasted directly into a page for testing.

Forms

You now have a functioning page and section working in tandem to produce some HTML
from Textpattern. The next step is to take advantage of the rich tag language in TXP and
convert static markup into flexible, dynamic templates by using forms. Textpattern forms,
as mentioned in Chapter 5, can rightfully be called “code snippets.” They are sections of
code and markup referenced by pages when needed. Think about your music library—
when you want to make a mixed CD, you’re pulling from only a dozen or so albums, even
though you might have 100 on the shelf. In Textpattern, you might have 100 forms ready,
but a page might use only 3 or 4.

Breaking it down
One of the primary goals of a Textpattern page is to minimize the amount of hard-coded
content on the page by moving any piece of content, HTML, PHP, or TXP tag over to forms
that can be called at any time by the CMS. Any code not outsourced is subsequently
changeable only by editing the page itself and this is a grossly ineffective use of the CMS’s
inherent efficiency. You should be able to change the structure of the site by changing
only a form or two, not combing through your pages and editing them individually.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

191

8

8326CH08.qxd 4/17/07 6:00 PM Page 191

With this in mind, you need to carefully disassemble the HTML and identify the following
elements:

Sections of dynamic content: This is the stuff that is pulled from the Content tab
into your template by using <txp:article />, <txp:article_custom />, and other
tags for articles, links, images, and files. They are easy to spot; generally any actual
text inside the HTML file becomes a dynamic field.

Pieces of static code that can be reused by other templates: A site footer is a
common example: the HTML can be moved into a form and treated as an include,
referenced by all templates but updated from one piece of source markup.

Any page-specific content that will never appear on another template: For
example, a contact page might have some special markup for a contact form that
will never see the light of day anywhere else.

The first two elements live in forms outside the page, and the last can exist either inside a
page as hard-coded markup or reside in a form like the others.

Let’s examine the five different types of forms at our disposal, which are selectable in the
drop-down menu at the bottom of each form screen. They include Article, Comment, List,
File, and Misc. Every form must be attributed to one of the five types, and how a form is
categorized carries considerable weight in the CMS. For instance, you might have a form
with article-specific tags (such as <txp:body /> or <txp:title />) that is called from an
<txp:article /> tag on your page. However, that form should be filed under the Article
type to work. Anything else might cause nothing to display when the final HTML is ren-
dered from your template. Let’s discuss the finer points of difference between the form
types.

Article forms
Article forms are used in conjunction with the <txp:article /> and <txp:article_
custom /> tags to pull content from your articles (stored under the Content tab) into your
page templates. They are the magic links that render blog posts, landing pages, static con-
tent, and any other block of text in your article database. Since articles can hold a variety
of content, from text to images to Textpattern plugin tags, the article-type form is a pow-
erful, versatile tool that is mission-critical to building Textpattern-powered sites. In fact,
you would be hard-pressed to find a TXP page that is not calling an article-type form.

Comment forms
Comment forms are for the display and collection of comments. You’ll notice on the pri-
mary form-creation page that there are quite a few tags for the handling of your visitor’s
feedback. There are specific tags for building the feedback form, displaying a list of recent
comments and for the display of the actual comments on the article web page. (See
Chapter 5 for a descriptive list of each tag and Chapter 10 for getting them to work.) Since
comments are a foundational element of content-based sites, Textpattern provides a for-
midable arsenal of tools for customization.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

192

8326CH08.qxd 4/17/07 6:00 PM Page 192

Link forms
Textpattern’s concept of links revolves around the tradition of blogs outputting a blogroll
or list of favorite links in the sidebar of the site. While the feature might have been fash-
ionable at the time of TXP’s genesis, it’s now a bit long in the tooth, stunted by limited set
of features and versatility. But it remains in the software, nonetheless, and provides devel-
opers with another set of content options. A form with a link type uses link-specific tags
such as <txp:linklist /> and <txp:linkdesctitle />, which are designed solely to out-
put content stored within the Links tab.

File forms
Very much like the other categories, forms with the type of file are designed to output a
narrow definition of content—in this case, data stored within the Files tab. Textpattern
offers more than ten unique tags to handle this information, and this is where they appear.

Misc forms
Forms with a misc type are a bit different from the rest because they are used for just
about everything else. The easiest way to think of the misc type is as a traditional server-
side include—that is, a piece of code that can be called into any template. Because the
Misc type deliberately frees the form from any specific type of content, it becomes a Swiss
Army knife tool for pulling a variety of content, including other forms. As an example,
although a misc-type form could not render a <txp:title /> tag (an article-specific tag
that outputs an article’s title), it could contain a <txp:article /> tag that referenced a
proper article form containing the <txp:title /> tag.

Dismantling the prototype

Now that you’ve examined the form options, it’s time to examine the HTML prototype for
the Buzzbomb home page and move it into different kinds of forms, converting static
code to dynamic, database-driven templates. Let’s take a look at the page’s HTML. Using
the previous guidelines, you need to identify dynamic content, static content that can be
reused, and any content that is unique to the page that doesn’t need to be outsourced.
Figure 8-8 shows a quick breakdown.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

193

8

8326CH08.qxd 4/17/07 6:00 PM Page 193

Figure 8-8. The prototype HTML can be broken down into dynamic and static content blocks.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

194

8326CH08.qxd 4/17/07 6:00 PM Page 194

Creating forms containing static content

First, let’s take care of the easy stuff by moving the header, main navigation, and footer
into separate forms with a misc type applied to each. By allocating these blocks of markup
to forms, the code can be reused across different templates by simply creating a
<txp:output_form /> Textpattern tag to reference the forms, as shown in the following
code. The first form will be called meta and contain the following markup pulled from the
top of the document:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http:// å

www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title></title>
<meta name="description" content="" />
<meta name="keywords" content="" />
<style type="text/css" media="screen,projection">
@import 'buzzbomb.css';

</style>
<link rel="stylesheet" type="text/css" href="#.css" media="print" />
<link rel="home" title="Home" href="/" />
<link rel="search" title="Search this site" href="#" />
<link rel="author" title="Send feedback" href="#" />
<link rel="contents" title="Site Map" href="#" />
<link rel="shortcut icon" type="image/ico" href="#" />

</head>

This form contains mostly static content—things that won’t change from web page to web
page—but it also contains metadata information that does change depending on which
page the visitor is viewing. (The metadata is emphasized in the preceding code.) This pres-
ents the opportunity to nest dynamic content (article-dependent meta information) within
a static form, something we’ll explore when we cover creating dynamic meta information
in Chapter 11.

The second block of static code is the header logo and the primary navigation. We’ll call
the form header+nav:

<div id="header">
<h1>Buzzbomb</h1>

<li class="first">Home
BuzzBlog
Tunes
Pics
Live
Contact

</div>

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

195

8

8326CH08.qxd 4/17/07 6:00 PM Page 195

The main navigation is fairly simple: it contains no drop-down menus or subsidiary links,
and it maps cleanly to the sections you created earlier. There are many plugins designed
to dynamically generate menus from sections, categories, or even specific clumps of arti-
cles, and they can be used in forms as effectively as vanilla HTML. For the Buzzbomb site,
you’ll use a simple plugin called cbs_navigation_menu2 that builds a menu from defined
sections. This is what the form header+nav looks like when you use the plugin’s syntax
instead of pedestrian HTML:

<div id="header">
<h1>Buzzbomb</h1>
<txp:cbs_navigation_menu
sections="default,buzzblog,tunes,pics,live,contact"
titles="Home,BuzzBlog,Tunes,Pics,Live,Contact"
break="li"
activeclass="active"
wraptag="ul"
ids="first,,,,," />

</div>

The final chunk of reusable HTML is the site’s footer. You’ll create a new form called
footer and add the following HTML:

<div id="footer">
<p>BuzzBomb is built with å

Textpattern. The band is fake, but the CMS is real.</p>
</div>
</div> <!-- ends #frame -->
</body>
</html>

After creating these three forms, you can replace the HTML on the homepage_test page
with <txp:output_form /> tags, which is the standard means of dropping misc-type forms
into a page. The code in the page now looks like this:

<txp:output_form form="meta" />
<body>
<div id="frame">
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
... main content ...
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...
</div>

</div> <!-- ends #center -->
<txp:output_form form="footer" />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

196

2. http://textpattern.org/plugins/636/cbsnavigationmenu

8326CH08.qxd 4/17/07 6:00 PM Page 196

Creating forms that contain dynamic article content

The concept behind forms with an article type is not that much different from forms with
a misc type. The goal is to remove static HTML from the page template, but instead of sim-
ply calling unchanging blocks of HTML like the site footer, you’re referencing blocks of
code pulling article content from the database.

Article-type forms are a bit more complex than their misc-type brethren. Textpattern pro-
vides a menu of article-specific tags designed for article-type forms for the purpose of dis-
playing data related to articles. Article-type forms exist to make your article data appear in
a page; they can do little with tags relating to files, comments, or lists.

In fact, if article-specific tags (such as <txp:title /> and <txp:body />) are placed
directly onto a page, nothing will happen unless they are wrapped inside a conditional
<txp:if_individual_article> tag, or they live inside a form with an article attribution.

Section-sensitive article output
When learning Textpattern, it’s always easier to see a piece of code in action to better
understand the CMS. Let’s return to the Buzzbomb site—there are two key areas of the
home page prototype requiring article-type forms to pull in content from the TXP data-
base: the latest blog entry in the center and the list of upcoming performances in the right
column.

Let’s start with the blog post. The goal for the home page is to show the latest entry to the
Buzzblog; since the band doesn’t post too often, showing any more than the most recent
is probably overkill.

Under the Content tab, we wrote an article called “Viva La Baltimore” about the band’s
exploits at a show in Baltimore. There’s nothing particularly unique about the entry itself:
it has a title, some content in the body, and some more content in the excerpt field. We
placed it within the On Tour category and within the buzzblog section.

Now that there is some real content, you need to transform the HTML you created for the
prototype into template-ready code. Normally, you would create a new form with an arti-
cle attribution (and you will in a moment), but because this is the primary content of the
home page, it’s common practice to use the form default that Textpattern provides for
just this purpose. (Please note that using default is not required. You could create your
own article-type form for the home page’s content and it will work just as well.)

So let’s take the snippet of the dummy markup currently displaying the blog entry and
place it into the form default:

<div class="buzzblogentry">
<p class="date">November 20, 2007</p>
<h3>Viva La Baltimore</h3>
<p>Just got back from the show in Baltimore. What a trip. Broken å

amps, a missing promoter and some dude with a shotgun, and that was å

only the opening act. Amazingly, we all made it out alive.</p>
<p>Read the whole sordid tale.</p>

</div>

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

197

8

8326CH08.qxd 4/17/07 6:00 PM Page 197

The next step is to replace the content you used for mockup purposes with Textpattern
tags that will call real content from the database. This is a very granular, tangible example
of separating content from structure, discussed in Chapter 6. The HTML remains the same,
but database hooks pull in content dynamically, so the CMS can use the single clump of
HTML over and over with different content. Let’s take a look at the revised form:

<div class="buzzblogentry">
<p class="date"><txp:posted /></p>
<h3><txp:title /></h3>
<txp:excerpt />
<p><a href="<txp:permlink />" title="<txp:title />">Read the whole å

sordid tale.</p>
</div>

The Textpattern tags—each designed to pull in a different aspect of an article—are
emphasized in the example. Let’s briefly examine each of these tags:

<txp:posted /> pulls in the article’s post date and time. The display of this infor-
mation can be wildly customized and is set in the Preferences area of the Admin tab.
(The formatting follows strftime,3 which formats display for local time settings and
can be overridden manually inside the tag using the format attribute.)

<txp:title /> shows the article’s title. You use this tag twice in the form—first as
the actual title of the blog post (wrapped in the <h3> tag), but also as the perma-
nent link’s title text.

<txp:excerpt /> outputs the content in the excerpt field of an article. Like
<txp:title />, it’s a straightforward database call that you’ll use often to grab a
specific piece of an article.

<txp:permlink /> means “permanent link” and is used to create a link to the arti-
cle’s permanent page. The tag actually has two different formats: a container ver-
sion and a single version. The single version, which you’re using in the previous
form, is self-closing and renders the actual URL. (The container tag renders the URL
and the <a> tag and wraps around the anchor text: <txp:permlink>anchor
text</txp:permlink>.)

Now that you have an article-type form for displaying the Buzzblog post, you need to ref-
erence it from the page. As discussed previously, to render an article-type form, you need
to use one of two Textpattern tags: <txp:article /> or <txp:article_custom />. The
<txp:article /> tag is section-sensitive, meaning that it pulls in only articles attributed to
the current section. Because you have instructed Textpattern to display the section
buzzblog on the home page (set in the Sections area of the Presentation tab), any content
attributed to the buzzblog section (like the article “Viva La Baltimore”) will appear on the
home page. So, to display the form, you’ll use the <txp:article /> tag like so:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

198

3. http://us2.php.net/strftime

8326CH08.qxd 4/17/07 6:00 PM Page 198

<txp:output_form form="meta" />
<body>
<div id="frame">
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<div id="buzzbloghead">
<h2>The Latest from the BuzzBlog</h2>
<p>Subscribe to the BuzzBlog</p>

</div>
<txp:article limit="1" />

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...
</div>

</div> <!-- ends #center -->
<txp:output_form form="footer" />

The <txp:article /> tag is emphasized in the preceding code. Notice that the
<txp:article /> tag has a limit attribute, which simply restricts the tag’s output to one
article—which, by default, is the most recent entry. (If the limit attribute is left out, TXP
falls back on the default of the ten most recent articles.) Typically, the <txp:article />
tag also has a form attribute, which tells TXP what form to use to render the output.
However, because you’re using the form default, a form does not need to be specified in
the <txp:article /> tag.

As you can see, linking article output with a template is straightforward. Create a form
with your template snippet, set it to an article type, and attach it your page with an
<txp:article /> tag.

Multiple templates within a single page
Let’s explore some of the deeper power of Textpattern’s templates. Now that you’ve set up
the Buzzblog post on the home page, you need to create the template for the whole blog
entry—the individual page that encases the actual post. In other words, when users click
the permanent link you created previously, they will be transported to this page:
buzzbomb.textpatternsolutions.com/buzzblog/viva-la-baltimore. You need to define
what that web page will look like.

One of the strongest efficiencies of Textpattern is its capability to nest multiple templates
within a single page. Using conditional tags, which are simple if statements, you can
place multiple article tags in a page and define which one is activated (depending on
where the user is within the site). The home page for Buzzbomb might have the following
templates built right into the same page:

The home page Buzzblog excerpt, which was covered previously

The full Buzzblog entry, which is where users go when they click the permanent link

The search results

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

199

8

8326CH08.qxd 4/17/07 6:00 PM Page 199

In the interest of keeping the example simple, we’ll cover only the first two (although we’ll
tackle the third in Chapter 11). You already created a form for outputting the Buzzblog
blog entry summary on the home page, so let’s move on to creating the article-type form
for rendering the entire article. Figure 8-9 shows what you want it to look like when you’re
done.

Figure 8-9. An individual blog entry for the Buzzbomb site.

As you can see from Figure 8-9, the overall shell of the site remains the same. You retain
the header, footer, and right column. In fact, you’re changing only the left column, essen-
tially swapping out the Buzzblog entry summary for the full text of the article. Here is the
HTML for rendering the full article you used in the initial mockup:

<div id="buzzblogheadarchive">
<p>Filed Under "On Tour"</p>

</div>
<div class="buzzblogentry">
<p class="date"> 7 October 2006</p>
<h3>Viva La Baltimore</h3>
... blog entry text ...

</div>

You’ll follow the same process as you did with the other form. Leaving the actual HTML
structure alone, the blocks of text are replaced with Textpattern tags that pull the article’s
content from the database. You’ll create a form called buzzblog_entry, select article in the
Type drop-down menu, and add the following code:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

200

8326CH08.qxd 4/17/07 6:00 PM Page 200

<div id="buzzblogheadarchive">
<p>Filed Under "<txp:category1 title="1" />"</p>

</div>
<div class="buzzblogentry">
<p class="date"><txp:posted /></p>
<h3><txp:title /></h3>
<txp:body />

</div>

Again, the Textpattern tags are emphasized in the code example. You’ll recognize several
from the previous article-type form for the home page showing the post summary,
including <txp:posted /> and <txp:title />, which are used to display the date and
article title again. In addition, there are two important new tags:

<txp:body /> is a straightforward tag that displays the article’s main content. There
are no attributes or options; it simply renders whatever you placed in the big win-
dow in the Write tab, which could be text, images, plugins, PHP code, or even more
TXP tags. (For more information, check out the “Body and Excerpt” section in
Chapter 7.)

<txp:category1 /> outputs the first category to which the article is assigned. You’ll
remember from Chapter 7 that you need to add the title attribute for Textpattern
to render the title of the category, not the name. (As you might suspect, there is
also a <txp:category2 /> tag that functions the same in all respects, except it out-
puts the second category to which the article is attributed.)

Now that you have the new form to render the whole blog entry, you need to attach it to
the page. Like the default form, you’ll use the <txp:article /> tag on the page to refer-
ence the new form buzzblog_entry. Here is the code:

<txp:article form="buzzblog_entry" />

You’ll notice that you don’t use the limit attribute this time. Textpattern automagically
recognizes that the form is being rendered for an individual page and only one article
should be displayed, so setting a limit of one is redundant. However, because you’re not
using the form default, you need to specify which form the tag should use to render the
article, which is accomplished through the form attribute. You instructed the system to use
the buzzblog_entry form for this instance.

But can you just add this tag right to the page? Unfortunately, it’s not quite so easy. Here
is where the magic of conditional tags comes into play. Let’s jump right in with the
<txp:if_individual_article> tag and see how it would appear on the page:

<txp:output_form form="meta" />
<body>
<div id="frame">
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

201

8

8326CH08.qxd 4/17/07 6:00 PM Page 201

<txp:else />
<div id="buzzbloghead">
<h2>The Latest from the BuzzBlog</h2>
<p>Subscribe to the BuzzBlog</p>

</div>
<txp:article limit="1" />

</txp:if_individual_article>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...
</div>

</div> <!-- ends #center -->
<txp:output_form form="footer" />

The logic is simple. You’re telling Textpattern the following: if you’re loading an individual
article—such as the kind reached via a permanent link—use this article-type form to load
the whole article; if you’re not hitting an individual article, go ahead and output the land-
ing page using the form default. This way, two unique article templates are driven seam-
lessly from one page, reducing the amount of extra code that needs managing.

Textpattern offers a host of conditional tags. Some are used in pages and others are used
in forms, but it enables developers to write quick and effective if-else rules that deeply
extend the potential of templates.

Section-independent article output
On the Buzzblog home page, you need to create one more set of article tags that will out-
put the tour date information in the right column. Because these articles are not inside the
buzzblog section—they are attributed to the Live section—you have to pull this informa-
tion using the <txp:article_custom /> tag, which is designed specifically for rendering
article data independent of what section the user is in.

First, let’s examine the right column and see whether you can organize the markup more
efficiently. There are three distinct sections: the latest tour dates (The Fat Shrapnel Tour), a
small promotional piece for the new album (Get “Monkey Funk”), and a few links to other
bands. Each of these can be outsourced to separate forms. For simplicity, you’ll move the
content of each to a misc-type form that can be easily referenced on the site. The new
sidebar code looks like this:

<txp:output_form form="meta" />
<body>
<div id="frame">
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
... content ...

</div> <!-- ends #content -->
<div id="sidebar">

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

202

8326CH08.qxd 4/17/07 6:00 PM Page 202

<txp:output_form form="sidebar_tour" />
<txp:output_form form="sidebar_promo" />
<txp:output_form form="sidebar_friends" />

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You’ll use these misc-type forms to hold the code for each blurb. This is certainly not
required, but when the blocks of HTML are compartmentalized, maintenance becomes
much less of a headache.

For the tour dates, you’ll focus on the contents of the sidebar_tour form. Looking at the
prototype HTML, you find the following bit of code:

<h4>The Fat Shrapnel Tour</h4>
<dl class="nextgig">
<dt>November 25, 2007</dt>
<dd>The Trocadero, Philadelphia

Doors at 8 PM</dd>

</dl>
<dl class="upcominggig">
<dt>November 28, 2007</dt>
<dd>Washington, DC</dd>
<dt>Dec 1, 2007</dt>
<dd>Boston</dd>
<dt>Dec 3, 2007</dt>
<dd>NYC</dd>

</dl>

The design splits the tour dates to stylize the next tour date differently from the rest, so
visitors can easily see where the next gig is being held. To accommodate the design, you
need two <txp:article_custom /> tags, each linking to its own article-type form—one
for the next gig and the other for the rest of the upcoming gigs.

Before you get started, let’s review the article entry for a typical tour date (see Figure 8-10).

There is no large body of content required for a tour date entry. Instead, you focus on
some key data pieces such as the venue and start time stored in custom fields, and the
category (which in this case is critical to ensuring that the tour date shows up in the sidebar).

Now that you have a good idea of what kind of content is involved, you can create the
article-type forms to display the information. You’ll create a form called sidebar_tour_next,
select Article as the type, and use the following code:

<dt><txp:posted /></dt>
<dd><txp:custom_field name="live_venue" />, <txp:title />

Doors at <txp:custom_field name="live_starttime" /></dd>

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

203

8

8326CH08.qxd 4/17/07 6:00 PM Page 203

You’re using two familiar tags—<txp:title /> and <txp:posted />—along with a couple
of <txp:custom_field /> tags to pull in the bits of content stored in the left column of
the Write tab, shown in Figure 8-10. (You’ll learn more about custom fields in Chapter 12.)
You can create another form called sidebar_tour_upcoming and use a similar block of
code, sans the custom fields showing the venue and start time:

<dt><txp:posted /></dt>
<dd><txp:title /></dd>

Figure 8-10. What a typical tour date looks like in the Write tab.

This form just shows the date of the show and in what city it’s located. It’s a fairly simple
form, but you’ll often find that some forms (especially those of the article variety) contain
very little code, sometimes as little as a single Textpattern tag such as <txp:title /> or
<txp:body />. There is no obligation to make any form any more complex or bloated with
code than what the situation demands.

Next, you create two <txp:article_custom /> tags to access the new forms:

<h4>The Fat Shrapnel Tour</h4>
<dl class="nextgig">
<txp:article_custom
form="sidebar_tour_next"
time="any"
limit="1"

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

204

8326CH08.qxd 4/17/07 6:00 PM Page 204

sort="posted asc"
section="live" />

</dl>
<dl class="upcominggig">
<txp:article_custom
form="sidebar_tour_upcoming"
time="any"
limit="3"
offset="1"
sort="posted asc"
section="live" />

</dl>

Because the <txp:article_custom /> tag is not tied to the section in which it appears,
you have to dictate the parameters from where the articles are pulled. First, you’ll notice
that both tags are pulling from the live section, in which all tour date articles reside.
You’ll also notice that each has a time attribute set to any. Because these articles are set in
the future, you must deliberately tell Textpattern to pull all articles from the live section,
no matter what the timestamp is, because the TXP default is to output only articles that
have a past date.

You will also notice each tag has a limit attribute, which caps the output to one and three
articles, respectively. The second tag also uses an offset attribute, which forces the list
of articles to begin after the specified amount. Since the first tag calls the first article, you
need to offset the second tag to avoid rendering the forthcoming tour date twice. Finally,
each tag is calling its respective form, which you defined previously.

The <txp:article_custom /> tag has a tremendous amount of attribute options that can
be mixed and matched to satisfy just about any article criteria, from specific categories
and sections to article status and from keyword values to the author of the material. It has
great value when it comes to formatting an archive list of articles or in situations that
demand extremely narrow output parameters.

Summary
At the end of the day, linking article data to a page template is not too difficult. With a
couple of well-written forms and an understanding of a few key Textpattern tags, you’ll be
hooking up templates left and right before you know it. As you learn the system and con-
duct trial-and-error experiments, it is highly recommended to keep the Textpattern Wiki’s
tag listing4 readily available. It contains almost every tag with corresponding attributes and
is an invaluable reference as you learn the nuances of the Textpattern language.

CUSTOMIZING THE PRESENTATION: SECTIONS, PAGES, FORMS, AND STYLE

205

8

4. http://textbook.textpattern.net/wiki/index.php?title=Alphabetical_Tag_Listing

8326CH08.qxd 4/17/07 6:00 PM Page 205

8326CH09.qxd 4/17/07 6:00 PM Page 206

9 TYING CONTENT AND STRUCTURE
TOGETHER

8326CH09.qxd 4/17/07 6:00 PM Page 207

Because of the separation of content and structure, the CMS design stresses that all site
content resides within the Content tab of the interface. This material is accessible by using
different type of forms—usually article-type forms—linked from pages. Chapter 8 explored
the relationship between pages, forms, and content, and how the Textpattern architecture
uses them as the three key building blocks for the website.

Understanding this trio’s inner relationship is crucial to unlocking the full potential of
Textpattern. While you started peeling back the layers of functionality and complexity in
the BuzzBlog example in the previous chapter, you’ll now go farther and start building out
different parts of the Buzzbomb site using pages, sections, forms, and different kinds of
content. You’ll explore lists of articles, landing pages, contact pages, and basic photo
galleries.

Building static pages
The definition of a static page is a bit nebulous and somewhat dependent on the context
of the rest of the site. For example, a common blog is mostly composed of the author’s
posts, and this section is considered “dynamic” because the content is constantly chang-
ing. A static page for a blog might be an about page, a colophon, or a contact page. By
contrast, a corporate website is built from static content. There might be some sections
that rely on regularly changing content (for instance, press releases, which might be added
weekly), but the bulk of the content is stuck in neutral.

Think of a static page as a web page of largely permanent text that stands alone, offset
from the regular flow of content. Its URL is usually an indicator as well, and might look like
www.yourblog.com/about or www.yourbiz.com/contact. In Textpattern terms, it’s usually a
section containing only one article.

For Buzzbomb, most of the content is dynamic, meaning that the pages change with regu-
larity. You do, however, have a brief terms of use blurb that the band’s record company
lawyers required to be appended to the footer of the website. This is a good example of a
static page because no one will touch this text anytime soon, and it falls well outside the
normal content of the site.

Laying the static page’s foundation

Since the static terms of use page is off by itself, it needs its own page and section to
define the structure.

First, you need to create the page that the section will link to, which is easily done by nav-
igating to the Pages area of the Presentation tab and copying the default page using the
copying function at the bottom of the screen. (Refer to Figure 8-7 in the previous chapter.)
Call the new page static_page. Although this is what you’ll link to the new section, you
don’t have to do any customization to the code at this time; you just need a placeholder
you can edit later.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

208

8326CH09.qxd 4/17/07 6:00 PM Page 208

After that, you need to establish a unique section for the static page called terms. After
navigating to the Sections area of the Presentation tab, you create a new section with a
fairly standard options set and link it to the page static_page. Look at Figure 9-1 to see
what the final section options look like.

Figure 9-1. By creating the static page for the site’s terms of
use, you created a new section called terms that links to a
page called static_page. This sets the foundation for the
web page going forward.

Now that you have the section and corresponding page set, you have a URL to access for
testing. If you retain clean URL mode, you can access buzzbomb.textpatternsolutions.
com/terms for development. It also sets the stage for the actual content, which you’ll
create next.

Creating the static page content

Creating the content for a static web page is no different from creating content for any
other web page; the difference comes in how it’s presented by the templates. For the
Terms of Use page, you simply head to the Write area of the Content tab, enter a title
(Terms of Use), and fill out the body, supplied by those always-helpful lawyers. The only
setting you need to pay attention to is the section attribution, which needs to be terms.
There is no need for the excerpt or categories because the text will never be displayed out
of context of the Terms of Use web page.

Creating the template for the static page

You now have the section, page, and article for Terms of Use. It’s time to bring them all
together. To do this, you need to create a new article-type form to display the content,
make a few edits to the template static_page, and then tie them together with a
Textpattern <txp:article /> tag.

TYING CONTENT AND STRUCTURE TOGETHER

209

9

8326CH09.qxd 4/17/07 6:00 PM Page 209

First, you’ll create an article-type form called static_text that will be used to display the
content of the article you just created. Because this isn’t a blog entry with comments or
other complex interactive elements, the tag selection is minimal:

<div class="staticentry">
<h3><txp:title /></h3>
<txp:body />

</div>

You created a containing <div> and then simply output the title and body text. Next, you
need to link this form into the page with a <txp:article /> tag. The final template is
simple:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article form="static_text" />

</div> <!-- ends #content -->
<div id="sidebar">
<txp:output_form form="sidebar_tour" />
<txp:output_form form="sidebar_promo" />
<txp:output_form form="sidebar_friends" />

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You’ll recognize this code from Chapter 8 because the bulk of it was also used for the
home page. You’re changing only the middle part inside the content <div>, but this time
there’s no need for conditional tags because the template is designed to handle only a
single article, nothing more. Now, when the user visits the Terms of Use page, they’ll see a
page just like the one in Figure 9-2 that shares the same overall template as the home
page, but houses just a single block of text.

This technique works well for just about any type of site needing a stand-alone page that
deviates from the rest of the content.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

210

8326CH09.qxd 4/17/07 6:00 PM Page 210

Figure 9-2. The final Terms of Use page blends wonderfully with the rest of the site.

Creating an archive page
For any sites that publish periodical content on a regular basis—whether a blog, news, arti-
cles, or other growing collection of work—there should be a way for users to review a list
of older material. A common format is a centralized archive page that organizes content
categorically, chronologically, or both, depending on what makes sense for your website.
An archive page is especially common for blogs. In fact, you’ll adapt the concept to the
Buzzbomb site.

TYING CONTENT AND STRUCTURE TOGETHER

211

9

8326CH09.qxd 4/17/07 6:00 PM Page 211

When a user first visits the site, the home page displays the most recent BuzzBlog entry.
This article is what 99 percent of readers will see, and few will dig deeper than that, which
is perfectly fine. However, users might occasionally visit the BuzzBlog section while skip-
ping around the site, and this is where you provide the opportunity to dig deeper into
older content. In the end, you want three blocks of messaging on the BuzzBlog page:

A small bit of introductory text to help users orient themselves after arriving.

The most recent blog entry highlighted, so new visitors immediately recognize
the last entry and when it was posted. This is the same entry that appears on the
home page.

A list of older articles, ordered by date.

As shown in the following steps, you use a slightly different technique for each piece.
You’ll start with the basics and then move step by step through getting those three blocks
of text where they belong.

Creating the section and page

Before you start slinging forms and <txp:article /> tags all over the place, you need to
create a foundation for the BuzzBlog archive page by setting up a new section and page
and then linking them together. The process closely mirrors what you did for the preced-
ing static page.

First, you create a new page called buzzblog. There’s no need to change any HTML or
code right away—simply copying the default page is a good enough start. Second, you
need to create a section. Keeping in mind that the section name appears in the URL, you
should pick something obvious and semantic; in this case, buzzblog works perfectly. (Keep
in mind that you already created the buzzblog section awhile ago because that’s what you
used for the “Viva la Baltimore” example; you’re just walking through the process again.)

Every time you create a major section of the website, you follow a similar path.
Occasionally, two or more sections reference the same page as their template, but the
steps generally mimic what you did in the past two examples.

1. Create a new page duplicated from the default page (or whatever template works
best for you).

2. Create a new section and make sure that the page you created in the first step is
selected in the Uses page drop-down menu so the section and page are linked.

3. Edit the new page to display the correct content.

Editing the archive template

Now that you have the shiny new section and page to work from, you can start building
the template for the blog archive. As discussed before, you want to include three distinct
pieces of content when a user clicks the BuzzBlog link in the main menu: a small bit of
introductory content, the first blog entry emphasized by showing its excerpt, and the

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

212

8326CH09.qxd 4/17/07 6:00 PM Page 212

remaining blog entries listed chronologically below that. From a Textpattern perspective,
there are three different <txp:article /> tags that accomplish this process.

Placing sticky content
The first task is to create some introductory text. Like creating any other content, you
simply open the Write tab and type the opening message. There is nothing too special
about this action, except that you need to select two important options. First, you need to
choose Sticky as the Article Status and you need to make sure that buzzblog is chosen as
the section.

The sticky status was discussed in Chapter 7 and you put it into practice now. When an
article is tagged as sticky, it is removed from the normal flow of content. A simple
<txp:article /> tag pulls in articles with only a live status; you must deliberately tell
Textpattern to go ahead and grab the sticky articles with the status attribute, like so:

<txp:article status="sticky" form="simple" />

When the status attribute is set to sticky, only articles with a sticky status are invited to
the party. The sticky article status was created for exactly the kind of situation the
BuzzBlog archive page presents. You have the normal flow of articles within the section—
the blog entries—but you need another article for this landing page that also falls within
the BuzzBlog section, but is not a blog post. Let’s look at some code and see how it all
works.

First, here is the template as it stands now for the archive page:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
... content ...

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You left the content area blank, which is where you will focus the development efforts.
Because this section is pulling the same content as the home page—articles inside the
buzzblog section—you can reuse some of the TXP code from the default page:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
... the landing page content ...

TYING CONTENT AND STRUCTURE TOGETHER

213

9

8326CH09.qxd 4/17/07 6:00 PM Page 213

</txp:if_individual_article>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

Let’s think about this conditional statement for a second. Both the home page and the
BuzzBlog archive page are pulling articles attributed to the buzzblog section, but only the
template for the section buzzblog needs to contain the <txp:if_individual_article>
tag because that is where the article will ultimately appear. (In other words, the URL will
be www.site.com/buzzblog/article-title, not www.site.com/default/article-title.)
You’ll reuse the form buzzblog_entry that you created in Chapter 8.

Now you need to worry about what users see when they visit the landing page. In refer-
ence to the preceding code snippet, it is everything between the <txp:else /> tag and the
closing </txp:if_individual_article> tag. You start with the sticky text, which serves as
the introduction to the landing page, adding to the previous Textpattern code example:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<txp:article status="sticky" form="simple" />
... the rest of the landing page content ...

</txp:if_individual_article>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

So when users are within the buzzblog section—and they are not visiting an individual
page—they see the sticky text as an introduction to the rest of the archived content. This
text appears above the archived articles, which you’ll add next.

Adding the most recent article
Now that you built the template and appended some introductory text, you need to start
building the main content of the landing page, which is the list of past blog entries. Before
you dive into the big list of past writing, you highlight the most recent blog post, which
involves the second <txp:article /> tag. In fact, this new tag is the only thing you add to
the template’s code:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

214

8326CH09.qxd 4/17/07 6:00 PM Page 214

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<txp:article status="sticky" form="simple" />
<txp:article limit="1" form="buzzblog_archive_recent" />
... the rest of the landing page content ...

</txp:if_individual_article>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

Let’s examine the addition. It’s a normal <txp:article /> tag, which means it is pulling
content from the section in which it’s operating—in this case, the buzzblog section. The
limit attribute caps the output at only one article, and you’re rendering that single article
using the form buzzblog_archive_recent, which contains the following code:

<h4>The Most Recent Entry</h4>
<div class="buzzblogmostrecent">
<h5><a href="<txp:permlink />" title="<txp:title />">å

<txp:title /></h5>
<txp:excerpt />
<p class="date"><txp:posted /></p>

</div>

So the archive page is now set to output some introductory text using a sticky article, fol-
lowed by highlighting the most recent blog post. Since you can’t have every past entry
represented by a full excerpt, the remaining list will be simplified.

Adding a list of all past articles
The third and final piece of the puzzle for this archive page is the actual list of all past arti-
cles, which sits below the most recent article, but displays a simple list of titles and post
dates instead of the full excerpt. The overall execution isn’t too much different from the
previous example, but because you’re dealing with a list of articles instead of just one, you
need to build the forms intelligently.

Since you’re pulling content from the buzzblog section, you’ll be using another
<txp:article /> tag, but this time it has some additional markup around it in the page.
Here is the new code:

TYING CONTENT AND STRUCTURE TOGETHER

215

9

8326CH09.qxd 4/17/07 6:00 PM Page 215

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<txp:article status="sticky" form="simple" />
<txp:article limit="1" form="buzzblog_archive_recent" />
<h4>Past Buzzblog Entries</h4>
<dl>
<txp:article limit="999" offset="1" å

form="buzzblog_archive_past" />
</dl>

</txp:if_individual_article>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

Because this is a list of articles, you had to remove any non-repeating HTML outside the
form; in this case, the <h4> and <dl> (which stands for “definition list”) get displayed only
once. If they were inside the form buzzblog_archive_past, a new set of <h4> and <dl>
tags would be rendered for every single article.

Because the <txp:article /> tag is designed to show all articles, you raised the limit to
"999" to ensure that you don’t miss anything. (The default for the limit attribute is ten.)
In addition, you also included the offset attribute, which means the list of articles skip the
first one in the series so you don’t display the most recent article twice. Finally, you
instructed the tag to use the article-type form buzzblog_archive_past, which contains
the following markup:

<dt><a href="<txp:permlink />" title="<txp:title />">å

<txp:title /></dt>
<dd>Posted on <txp:posted /> in <txp:category1 title="1" /></dd>

This form repeats over and over until Textpattern reaches the end of the list. As you can
see in the final screenshot of the archive page (see Figure 9-3), you have four articles that
get displayed. Each is displayed using the preceding code, which is related to the <dl> tag
surrounding the <txp:article /> tag in the page, so the final output is a tidy definition
list that looks something like this:

<dl>
<dt><a href="http://buzzbomb.textpatternsolutions.com/buzzblog/å

on-the-road-again"
title="On the Road Again">On the Road Again</dt>

<dd>Posted on 3 October 2006 in On Tour</dd>
<dt><a href="http://buzzbomb.textpatternsolutions.com/buzzblog/å

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

216

8326CH09.qxd 4/17/07 6:00 PM Page 216

a-blog-entry"
title="A Blog Entry">A Blog Entry</dt>

<dd>Posted on 1 October 2006 in Random Life</dd>
... etc ...

</dl>

So you successfully created a blog archive page that includes three key elements: some
introductory copy, the latest blog entry highlighted, and finally a list of all the remaining
entries in chronological order. At the end of the day, the page looks like Figure 9-3.

Figure 9-3. The final blog archive page, complete with introductory text, the most recent blog entry
highlighted, and a complete list of all entries.

TYING CONTENT AND STRUCTURE TOGETHER

217

9

8326CH09.qxd 4/17/07 6:00 PM Page 217

Creating a contact page
Just about any site, from businesses to blogs to online communities, has a contact page.
Sometimes it’s an elaborate section full of global office addresses, a list of principals, and
complex inquiry submission forms; and sometimes it’s just an email address. Whatever you
as a designer choose to do, the fact remains that you need a dedicated place on your web-
site for people to contact you.

For the Buzzbomb site, you have ordained that the contact page can be accessed from the
main menu by using the Contact link. You build a single page with some introductory copy
and a contact form by building on some of the techniques laid out earlier in the chapter
(and also learn some new concepts).

Section and page wonder duo

Start where you began with the other examples and create a new page and section. Since
this contact page is very similar in structure to the static content page at the beginning of
the chapter, you’ll follow a near-identical procedure.

First, copy the page static_page from the first example to a new page called contact.
You’re copying this one because its simplicity most closely matches what you want to
accomplish in the new contact page. Like before, you don’t need to make any changes to
the new page contact just yet.

Next, create a new section called contact. You choose the same options as the first exam-
ple (refer to Figure 9-1), except that you link to the new page contact in the Uses page
drop-down menu. Now that a new landing page for the section is established (visible at
buzzbomb.textpatternsolutions.com/contact), you can start filling it with content.

Adding some introductory copy

The next step is to add some introductory content to the page before the web form to
encourage people to send you some email. To do this, you simply create a new article in
the Write area of the Content tab, give it a title and some content in the large body field,
and then attribute it as a sticky article and select contact as the article’s section.

To get the content to appear on the contact page, you mimic what you did for the blog
archive page. In fact, you steal some code wholesale:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article status="sticky" form="simple" />

</div> <!-- ends #content -->
<div id="sidebar">

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

218

8326CH09.qxd 4/17/07 6:00 PM Page 218

... sidebar content ...
</div>

</div> <!-- ends #center -->
<txp:output_form form="footer" />

Within the structure you see a familiar line of bold markup, which is the line you used in
the blog archive web page to call the introductory copy. Since it worked so well there, and
since you haven’t introduced any different functionality, it makes sense to simply reuse the
markup. The <txp:article /> tag uses the status attribute to pull the only sticky article,
which is then processed using the article-type form simple, which looks like this:

<h3><txp:title /></h3>
<txp:body />

You could realistically use this code and technique to create introductory copy on any
landing page of the Buzzbomb site. Employing small reusable forms is a leading contribu-
tor to Textpattern’s efficiency and flexibility as a website development platform; designers
can build a library of small, easy-to-digest bits of code that easily plug into a variety of
development equations.

Adding the contact form

The final step of the contact page is to build a form that the visitors can use to submit
requests for information, tour dates, merchandise, and more. Textpattern users are fortunate
in having the option of using a PHP-based form or a mature plugin called zem_contact_
reborn that generates a contact form based on the attribute values you set in the plugin’s
tag. (You’ll learn about both techniques later in the chapter.)

Regardless of the technique you employ, house the contact form in a separate Textpattern
form (which will be called contact_form) to keep the root page clean. Since it’s not hold-
ing any article-specific information, it will be a misc-type form. To reference this from the
page, you’ll add the following lines of code:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article status="sticky" form="simple" />
<txp:output_form form="contact_form" />

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You’re now all set up to create the contact form. Let’s examine the two options.

TYING CONTENT AND STRUCTURE TOGETHER

219

9

8326CH09.qxd 4/17/07 6:00 PM Page 219

Using a raw PHP-driven solution
For those possessing knowledge of PHP and wanting the ultimate level of customization,
Textpattern supports the ability to embed raw PHP scripts inside the content management
system (CMS). PHP code can be placed directly on a page, tucked away in a form (as you’re
doing), or even added to an article. This is valuable not only for contact forms but also for
advanced functionality not easily supported by Textpattern, such as forums, rating systems,
and ecommerce packages.

There are literally hundreds of contact forms written in PHP. They range from free, simple
forms to complex, feature-rich solutions that require a license fee. It’s impossible to rec-
ommend any specific script, but you should try and use one that supports the following:

An email-checking function, which is just a short contingency script to ensure that
email addresses are well formed (like theguy@theplace.com).

The capability to dictate required fields.

Built-in security measures, including the “scrubbing” of content so malicious
markup, header injections, and other threats can’t be sent through email.

Some type of visual feedback when a form either goes through successfully or can-
not go through because of a specific error. (And the level of detail in error messages
is important—you want people to understand why the email did not make it.)

Using Textpattern plugins
In December 2004, a plugin called zem_contact was offered to the Textpattern commu-
nity. The source code underwent several quick revisions and was then donated to the
general TXP community to continue development. That plugin, which is now called
zem_contact_reborn, has become one of the most valued and widely employed pieces of
software in Textpattern-driven sites.

Essentially, the plugin enables a developer to create a complete functioning inquiry form
from simply filling out a few options in the tag itself. No knowledge of PHP or any kind of
scripting is necessary. At its most basic, the tag looks like this:

<txp:zem_contact to="theguy@theplace.com" />

Hotscripts.com is a listing of thousands upon thousands of free scripts, in
PHP and other languages. It has a list of free and for-pay PHP scripts designed
just for user inquiries.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

220

8326CH09.qxd 4/17/07 6:00 PM Page 220

This tag produces a complete contact form with a name, email, and message field that
sends the message to the email address specified in the to attribute. While this is pretty
handy in and of itself, the plugin’s writers have also included a litany of additional tags and
options for customizing the output to a very granular level. In addition to being able to
redirect to a thank you page, send a copy of the message to the sender, or specify “thank
you” text, developers can also build more-complex forms with a variety of elements,
including text fields, message areas, checkboxes, radio buttons, drop-down menus, and
more.

For the Buzzbomb site, you create a more complex form that takes advantage of the tag’s
rich pool of options. This is the code that appears in the TXP form called contact_form:

<txp:zem_contact to="theguy@theplace.com">
<txp:zem_contact_text label="Your Name" break="" />

<txp:zem_contact_email break="" />

<txp:zem_contact_select
label="You Are"
list="A Ravenous Fan,A Forward-Thinking Promoter,å

A Jealous Record Company Rep,Common Street Trash"
break="" />

<txp:zem_contact_textarea label="Your Message" break=""å

cols="30" rows="12" />

<txp:zem_contact_submit label="Click It" />
<div class="checkbox">
<txp:zem_contact_checkbox label="PS, send me free stuff"å

break="" required="no" />
</div>

</txp:zem_contact>

As you can see, you not only use the standard name and message fields but also provide
the opportunity for visitors to identify themselves via the drop-down menu and request
some free stuff via the checkbox. (You added a small amount of additional HTML markup
to control styling, which is sometimes necessary given that individual tags do not allow the
attribution of classes or IDs.) The final contact page looks like Figure 9-4.

This flexibility has made zem_contact_reborn the go-to choice for developers across the
community. It’s fast, easy, and flexible enough to handle just about any contact form. Visit
the Textpattern Forum1 to read more about the plugin or for general troubleshooting. It is
available to download for free from Textpattern Resources.2 To learn more about installing
plugins, see Chapter 13.

TYING CONTENT AND STRUCTURE TOGETHER

221

9

1. http://forum.textpattern.com/viewtopic.php?id=13416
2. http://textpattern.org/plugins/701/zem_contact_reborn

8326CH09.qxd 4/17/07 6:00 PM Page 221

Figure 9-4. The completed contact form using the plugin zem_contact_reborn employs a variety
of customized tags.

Creating a basic photo gallery
One of the big sections of the Buzzbomb site is the photo gallery section, in which
the band can display photos from the tours, publicity shots, and more. The pictures are
drawn from the Images tab in the CMS, which not only categorizes the pictures, but also
enables the creation of thumbnails, captions, alternate text, and more. (For more informa-
tion about the mechanics of the Images tab, see the section “Images, files, and links” in
Chapter 7.)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

222

8326CH09.qxd 4/17/07 6:00 PM Page 222

Textpattern is a mixed bag of tricks when it comes to handling images. It is adept at creat-
ing just about any type of image-based content, from photoblogs to complex galleries, but
relies on plugins to accomplish any significant functionality. Native tags are minimal at
best, woefully inadequate at worst. This section discusses the tags that Textpattern pro-
vides, but also delves into some common third-party add-ons, including rss_thumbpop,
which has become the de facto plugin for generating galleries.

Section and page (again)

If you followed along in this chapter, you realize that when creating big additions to your
Textpattern websites, you almost always generate a new section and page as your starting
point. The photo gallery is no different.

First, copy the page contact you created earlier in the chapter since its simplicity will
come in handy when you start editing the template. Name the new page pics. When
choosing which page to duplicate for your new section, always try to copy one that is clos-
est in terms of code to minimize customization. In this case, the page contact contains
only one line that needs deleting; the rest of the template is sound.

In addition, create a new section called pics, select all the standard options for a static
page (refer to Figure 9-1), and link to the new page pics from the Uses page drop-down
menu. (There is no specific reason why the section and page share the same name, but it
can be convenient for organizational purposes when everything falls within the same
nomenclature.) Once this link is in place, you can move forward and edit the templates.

Adding introductory copy (again)

In staying true to the previous two examples, you add some introductory copy using the
same techniques discussed earlier. You copied the page contact because almost every line
of code remains intact; in fact, the only line that is removed is the reference to the contact
form. Once that’s done, you’re back to the familiar template:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article status="sticky" form="simple" />

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

As you can see, the bolded line is the same. Since the <txp:article /> tag is contextual
to its section, you don’t need to change a thing. The page contact automatically picks up
the sticky article for the contact section, and the page pics automatically pulls the sticky
article for the pics section.

TYING CONTENT AND STRUCTURE TOGETHER

223

9

8326CH09.qxd 4/17/07 6:00 PM Page 223

All you need to do is access the Write tab, enter a title and some introductory copy, and
then attribute the section pics to the article. Like before, the article-type form simple
outputs this content. Once you have the opening content settled, you can move into
creating the photo gallery.

Creating the photo gallery

Chapter 7 discussed the Images tab inside the CMS and how to upload images and create
thumbnails. You learned how to create categories for the images and use that meta infor-
mation to organize the content. For the photo gallery section of the Buzzbomb site, you
put those tools into practice.

TXP tags vs. plugins
While Textpattern is capable of complex functionality out of the box, it cannot be every-
thing to everyone and it falls painfully short in some areas. Thankfully, its extensible archi-
tecture allows plugin writers tremendous latitude in adding a range of capabilities, from
small visual tweaks to large architectural alterations. You saw this in action in the previous
example when the powerful plugin zem_contact_reborn created an entire custom contact
form with only a few tags.

When it comes to managing images uploaded to the Images tab, Textpattern falls short in
providing basic capabilities. Thankfully, several plugin writers have taken the baton and
run far, and the Textpattern community now has a library of extremely useful add-ons that
enable designers to take full advantage of their images.

One of the most useful plugins is rss_thumbpop. It creates a series of thumbnails from a
defined category of images and links each to the full-scale version in a new popup window
or in the current window as a new page. Its application is fairly basic, but extremely pow-
erful, and simple enough that it has become one of the most popular TXP plugins to date.
You’ll use it in the following photo gallery page.

Using rss_thumbpop for the photo gallery
For this example, you don’t need any <txp:article /> tags beyond what you already
employed for the sticky article. Instead, you’ll use the plugin to reference images directly
from the database.

You uploaded a bunch of images to two categories: “The Band” (pictures of Buzzbomb
members) and “Places” (pictures of tour locations). Each image has a thumbnail 100 pixels
wide, and each has appropriate text for the alt attribute. You’ll use rss_thumpop to ren-
der the thumbnails for each category. Let’s take a look at some code:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article status="sticky" form="simple" />
<txp:rss_thumbpop
category="The-Band"

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

224

8326CH09.qxd 4/17/07 6:00 PM Page 224

mode="float"
showcaption="0"
label="Pictures of the Band" />

<txp:rss_thumbpop
category="Places"
mode="float"
showcaption="0"
label="Places We've Been" />

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

The tag <txp:rss_thumbpop /> contains many attributes and can accommodate many
designs. You’re using only a couple of options here, namely the definition of the categories
(the first tag renders all images attributed to the category “The Band”; the second tag pulls
anything tagged “Places”), setting the mode attribute to float (as opposed to relying on a
table-based layout), and then turning off the display of captions. By default, these tags will
render HTML similar to this:

<div class="rssThumbs">
<div class="rssThumbLabel">Pictures of the Band</div>
<div class="rssThumbFloat">
<a target="_blank"

href="http://buzzbomb.textpatternsolutions.com/images/18.jpg"
onclick="window.open(this.href, 'popupwindow', 'width=370,å

height=253,resizable');
return false;">

<img class="rssThumb" src="http://buzzbomb.textpatternå

solutions.com/images/18t.jpg"
alt="Rockin out at a crazy angle." title="" />

</div>

</div>

This code example shows only one image, but you can see how the plugin is creating the
wrapper tags around the label, the HTML anchor tags (including the JavaScript that loads a
new window), plus the class names for various <div> tags you can use for cascading style
sheet (CSS) styling. Since you elected to float the images, you need to add a rule to the
CSS file telling any <div> with a class of rssThumbFloat to actually float. For instance:

#center .rssThumbFloat {
float: left;
width: 120px;

}

TYING CONTENT AND STRUCTURE TOGETHER

225

9

8326CH09.qxd 4/17/07 6:00 PM Page 225

The images now float to the left. (For more information on floating in CSS, consult the
excellent Floatutorial3 created by Max Design.) There’s really not much else to do except
add more images and let the plugin do all the work for you. Figure 9-5 shows the final
photo gallery.

Figure 9-5. The photo gallery uses the rss_thumbpop plugin to organize and display pictures you
uploaded from the Images tab.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

226

3. http://css.maxdesign.com.au/floatutorial/

8326CH09.qxd 4/17/07 6:00 PM Page 226

Summary
By now, you should understand the basics of tying content and structure together using
pages, sections, forms, and articles. This can be done from vanilla Textpattern tags and
from plugins; and can use normal articles, sticky articles, and even content housed in other
tabs, such as Images. The concepts in this chapter reinforce the ideas initially presented in
Chapter 8 and represent the fundamental building blocks of TXP-based sites. Once the
relationship between sections, pages, forms, and articles is understood, you can accom-
plish just about anything with Textpattern.

TYING CONTENT AND STRUCTURE TOGETHER

227

9

8326CH09.qxd 4/17/07 6:00 PM Page 227

8326CH10.qxd 4/11/07 12:31 PM Page 228

10 COMMENTS

8326CH10.qxd 4/11/07 12:31 PM Page 229

Although Textpattern is a versatile content management system (CMS) that can easily
handle just about any type of website, it has always been very strong at powering blogs
and media sites that are updated constantly. Part of the appeal of those sites is the natural
conversation that develops between the author and reader, and the core building block
behind that dialogue is the ability to comment on a blog entry.

In fact, the commenting phenomenon has spread beyond traditional blogs and made
its way into more mainstream media as well as sites with longer article-like content.
TravelWithYourKids,1 a website powered by Textpattern, is not a blog at all; it is a collec-
tion of articles focusing on tips for traveling the world with kids. However, each article
provides the opportunity for the reader to comment on the article. More and more sites
are adopting this conversational web design.

Thankfully, Textpattern provides a rich development environment for commenting. You
can customize the display of comments and the comment submission field. By using a host
of plugins, as well as the Textpattern inherent architecture, you can craft a reader partici-
pation experience to rival any site.

Activating comments
The reality is that some sites have no need for comments. Longer prose, formal writing,
photography galleries, corporate websites, and others simply might not need two-way
communication between author and reader. Textpattern provides the means to activate or
disable comments on both a global and per-article basis.

Global off switch

The Textpattern CMS provides the ability to globally activate or deactivate comment func-
tionality. By default, it is turned on, but if you’re developing content with a static feel not
appropriate for reader feedback, simply navigate to the Preferences area of the Admin tab
and change Accept comments to no. After doing so and clicking Save, the second set of
options on the screen (seen in Figure 10-1) disappear.

Note that disabling comments from the Admin tab affects the entire site. Any
comment forms attached to article forms simply do not appear, and any arti-
cles that could previously accept comments have the submission form for new
comments disabled.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

230

1. www.travelwithyourkids.com

8326CH10.qxd 4/11/07 12:31 PM Page 230

Figure 10-1. After selecting no in the Accept comments field, the bottom
options disappear since they relate only to comments.

Comment expiration
Under the Comments header in Figure 10-1, you see a series of options relating specifically
to comments and how they operate on your site. One useful option in this menu is the
capability to set an expiration date for commenting ability. This is a good way to keep
conversations fresh and comment spam at bay since the CMS systematically disables com-
ments article by article depending on the time limit set in this drop-down menu.
Unfortunately, the field is not customizable—you can choose only between one and
six weeks.

COMMENTS

231

10

8326CH10.qxd 4/11/07 12:31 PM Page 231

Article-level control

In addition to the global on/off toggle, it is also possible to disable comments on a per-
article basis. This would, of course, require comments to already be activated across the
site (see the previous section) and the templates to be in place and visible to the end user.

You might want to disable comments for a single article for any number of reasons. Some
articles rank higher in search engines and are therefore premium targets for comment
spam. Other entries might have discussions that have gone on way too long, and the
remarks are getting out of hand. Still other articles become long in the tooth and need to
be retired to a noninteractive, read-only stasis.

To turn off a specific article’s commenting capability, navigate to the article via the Articles
area in the Content tab and click its title to load it into the Write tab. Once in the main edit-
ing screen, click the More link in the bottom right (just above the Save button). As you can
see in Figure 10-2, more options display, including a small panel with an on/off toggle for
that particular article’s comments. Simply click Off, click Save, and then you’re in business.

Comments and articles
The Textpattern commenting system—and how to integrate comments with articles—are
some of the most frequently discussed subjects in forums and blogs. A tremendous
amount of the Textpattern code and database real estate is consumed with the collection,
management, and output of comments. The result is a feature-rich system that is not
always intuitive to less-experienced Textpattern users.

It is helpful to understand that every comment is attached to its parent article, and that
association dictates how and where the comment gets displayed (there are very few
instances in which a comment can be displayed outside the context of its original article).
Also, like an article, each comment has a unique ID (for instance, 000124) that is assigned
consecutively as comments are entered into the system.

The display of comments and the submission form is handled in forms, just like articles,
except that the forms are given an attribute of comments instead of article. Textpattern
has its own library of tags that only work inside comment-type forms. Both types of forms
work in tandem, and, as described in the following section, they often find themselves
mixed up together.

Figure 10-2. You can disable commenting
for a single article.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

232

8326CH10.qxd 4/11/07 12:31 PM Page 232

Comments forms

In its default installation, Textpattern provides several forms ready for customization. In
fact, you might find yourself not needing to create any other comment-type forms
because of the foundation the system has already laid. Let’s explore these forms in depth.

Comments
The Comments form controls the display of individual comments. It’s designed to be a small
piece of code that is reused over and over—every comment that is displayed with the
article is output from this template. This form cannot be deleted or renamed because it is
the default form called by the Textpattern tag <txp:comments />. The default Textpattern
install includes the following inside Comments:

<txp:message />
<p class="small">— <txp:comment_name /> · å

<txp:comment_time /> ·
<txp:comment_permlink>#</txp:comment_permlink></p>

Notice the tags specific to outputting comment information. (It is interesting to note that
as of Textpattern 4.0.4, the default installation still uses the depreciated <txp:message />
tag, which has since been upgraded to the more semantic and functionally robust
<txp:comment_message /> tag.) In total, Textpattern contains eight tags designed to ren-
der different comment attributes (described in detail in Chapter 5). These tags can be
mixed and matched to your choosing. They all can exist in the comment-type form to out-
put a comment’s data, even repeating if necessary.

In the site for Buzzbomb, you enabled basic commenting for the BuzzBlog. The
Textpattern default tag selection remains largely intact, but the output is customized so
the design is more in line with the rest of the site’s look and feel. The revised form uses the
following markup:

<div class="comment">
<txp:comment_message />
<p class="details">Posted by <txp:comment_name /> å

on <txp:comment_time />
<txp:comment_permlink>#</txp:comment_permlink></p>

</div>

Some different HTML is added to enable more visual control with the stylesheet, as you
can see in Figure 10-3.

If you review Figure 10-1, you’ll notice that the third option under the Comments header
is Present comments as a numbered list?. This choice affects the output of this form as it
dictates whether the form is going to be wrapped in an element. If you change this
option to No, you remove any Textpattern-generated formatting. You can always man-
ually place your comments back in an ordered list.

COMMENTS

233

10

8326CH10.qxd 4/11/07 12:31 PM Page 233

Figure 10-3. The form Comments is customized with its own HTML to
better control the output of reader comments.

Comment_Form
The second form you need for operating comments is the code that controls the actual
submission form. In the default Textpattern install, this form is called comment_form, and
like Comments, it cannot be deleted or renamed because it serves as the default form when
the CMS goes looking for the HTML form to place with the article. Unlike the repeating
comments-type form that controls the output of the comments, described previously, this
form appears only once on the page. Its purpose is to collect comments, not display them,
as shown in Figure 10-4.

The content of comment_form in its default state is a jumble of table-based markup and
tags. The Textpattern tags that manifest inside this submission form create the actual
HTML form elements (usually an <input /> tag), but the corresponding form labels need
to be created in addition. For instance, the <txp:comment_name_input /> tag outputs the
following:

<input type="text" name="name" size="25" class="comment_name_input" å

id="comment_name_input" />

In the form, this needs to be complemented with a <label> tag:

<label for="name">Name</label>
<txp:comment_name_input />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

234

8326CH10.qxd 4/11/07 12:31 PM Page 234

Figure 10-4. The comment submission form in the Textpattern
default install is created with tables. This form can be easily
customized in the comment_form form.

In the Forms area of the Presentation tab, the left column has a heading called Comment
form that contains the tags that can be used for the submission form. Chapter 5 describes
these comment-related Textpattern tags in detail and also contains an example of an
accessible, well-structured HTML form.

As with the other comment-type form, the tags for creating the HTML input fields can be
mixed and matched, depending on your site’s design. Some, like <txp:comment_web_input
/> and <txp:comment_remember />, are optional, and you might decide to omit them
completely from your submission form to simplify the commenting process for your audi-
ence. Even the author’s name and email address are optional, as long as you correctly set
your preferences in the Advanced Preferences tab.

Popup_Comments
Viewing and adding comments in a separate pop-up window is an antiquated technique
from the pioneering days of blogging, when reader feedback systems were inconsistent
and the scripts that administered them were relegated to their own web page to avoid
breaking the page housing the actual blog post. Today, very few blogs remain faithful to
this technique. Readers expect comments to exist in context on the same page as the
article.

For better or worse, Textpattern still supports this method. The Preferences page with the
drop-down menu labeled Comments mode (refer to Figure 10-1) controls whether com-
ments are displayed in the normal browser window or in a pop-up window. The comments-
type form popup_comments houses a basic HTML shell for adding the other forms. You can
add whatever formatting and styles to this page you want, just like any other page in
Textpattern. The popup_comments form can be deleted or renamed; if you are not placing
your commenting system inside a pop-up window, you should delete this form.

COMMENTS

235

10

8326CH10.qxd 4/11/07 12:31 PM Page 235

Adding comment functionality to articles

Now that you know the basics of the various comments-type forms, you need to integrate
comments into the site. This can be accomplished several ways, but before you start
throwing Textpattern tags into your pages, you need to ensure that the settings are prop-
erly set in the Preferences tab.

Important preference settings
The Textpattern CMS offers developers many options from the Preferences tab, and these
choices control your entire site and wield tremendous influence on the functionality of
Textpattern. Nowhere is this truer than in the commenting system. In the Textpattern
administrative interface, navigate to the Basic area of the Preferences tab; as you saw in
Figure 10-1, the bottom half of this screen is consumed by options affecting comments.
The default installation preselects a number of critical options regarding comments, some
of which need to be changed.

In the first group of options, make sure that Accept comments is set to Yes; otherwise, the
bottom set of options—the ones controlling comments—do not appear. Chapter 3 covers
each of the various comment options in depth, so just a few critical choices are covered
here to ensure that your site’s development runs as smoothly as possible:

On by default? Choose this option wisely. It controls whether the article-level con-
trol, discussed previously, is set to On or Off by default when creating a new article.
For simple blogs and other sites actively soliciting reader response, it should prob-
ably be set to Yes; for sites that only occasionally allow comments, No might work
better. (And if choosing No, make sure that you manually enable comments for
each article in which you want the feedback mechanism to appear.)

Present comments as a numbered list? Select No for this option. You want gran-
ular control over the HTML, not have Textpattern create the markup for you. (You
can always wrap the comments in a numbered list later on.)

Comments mode: This option should be set to nopopup.

Automatically append comments to articles? This option should always be set to
No. If set to Yes, Textpattern automatically displays an article’s comments and com-
ment form after every <txp:article /> tag, which can create huge problems for
templates that contain more than one <txp:article /> tag. By selecting No, you
elect to manually place the <txp:comments /> and <txp:comment_form /> where
you want in your template.

Other Preferences settings—including the ones in Advanced Preferences—largely control
the semantics and peripheral output of comments. But the preceding four options deter-
mine the fundamental manner in which Textpattern displays and administers comments,
so making sure that these switches are correctly flipped can avoid a lot of problems down
the road.

Adding comments directly to the <txp:article /> tag
You have now examined forms for both articles and comments, and it’s time to merge them
together. As discussed in Chapter 8, article information is output via the <txp:article />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

236

8326CH10.qxd 4/11/07 12:31 PM Page 236

tag and is contextual to the section to which the page is linked. The <txp:article /> tag
references a specific article-type form that contains a miniature template dictating how
the article information is rendered. In Chapter 8, you laid the foundation of BuzzBlog with
the following code on the page:

<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<div id="buzzbloghead">
<h2>The Latest from the BuzzBlog</h2>
<p>Subscribe to the BuzzBlog</p>

</div>
<txp:article limit="1" />

</txp:if_individual_article>

When an individual entry is output, it uses the form buzzblog_entry. This form contains
the following:

<div id="buzzblogheadarchive">
<p>Filed Under "<txp:category1 title="1" />"</p>

</div>
<div class="buzzblogentry">
<p class="date"><txp:posted gmt="0" /></p>
<h3><txp:title /></h3>
<txp:body />

</div>

This form renders the blog post in its entirety. Since you want to add commenting func-
tionality after the display of the entire article, you need to append the <txp:comments />
tag (the one that displays the comments) and the <txp:comment_form /> tag (the one that
displays the actual submission form) to the end of this form. Here is the revised form
buzzblog_entry to include commenting:

<div id="buzzblogheadarchive">
<p>Filed Under "<txp:category1 title="1" />"</p>

</div>
<div class="buzzblogentry">
<p class="date"><txp:posted gmt="0" /></p>
<h3><txp:title /></h3>
<txp:body />
<txp:comments />
<txp:if_comments_allowed>
<txp:comments_form />

</txp:if_comments_allowed>
<txp:if_comments_disallowed>
<p>Comments are turned off for this article.</p>

</txp:if_comments_disallowed>
</div>

COMMENTS

237

10

8326CH10.qxd 4/11/07 12:31 PM Page 237

Let’s explore this new syntax. The beginning of the code is the same as before: Textpattern
renders the body of the blog post inside the <div> buzzblogentry. But before the closing
</div> tag, some new markup for displaying the comments was added.

First is the <txp:comments /> tag. As discussed previously, it outputs the existing com-
ments, one after the other, by using the form Comments. (You can use a different form
simply by adding a form attribute to the tag.)

After the comments are finished, you tell Textpattern to display the comment submission
form. Since you don’t know whether comments will be enabled or disabled down the
road, a small conditional statement is set up that says if comments are enabled, go ahead
and display the submission form using the <txp:comments_form /> tag; if they are dis-
abled, don’t show the form but offer a small note saying Comments are turned off for
this article.

You can, of course, render the submission form before the display of the comments or
place them in different parts of the page. This is simply an example of how most sites
structure the functionality. People familiar with blogs or media sites in which commenting
is allowed are used to reading the current comments first and then finding a comment
submission form at the bottom of the web page. This code represents the most efficient
way of doing that.

Rendering comments from their own <txp:article /> tag
Just like the blog post’s title, excerpt, or date, comments are intrinsically tied to their par-
ent article. An article-type form referenced from an <txp:article /> tag could hold any
value of the original article; for instance, you might have an article-type form displaying
just the title, another displaying just the posted date, or another displaying just the con-
tents of a custom field. Similarly, an <txp:article /> tag could link to an article-type
form housing just comment-related output.

Get started with the following code on the page to output an article’s content:

<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<div id="buzzbloghead">
<h2>The Latest from the BuzzBlog</h2>
<p>Subscribe to the BuzzBlog</p>

</div>
<txp:article limit="1" />

</txp:if_individual_article>

Instead of adding all the comment-related code to the article-type form buzzblog_entry,
you could create another article-type form called buzzblog_entry_comments to house that
code. The following might be the contents of the new form buzzblog_entry_comments:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

238

8326CH10.qxd 4/11/07 12:31 PM Page 238

<txp:comments />
<txp:if_comments_allowed>
<txp:comments_form />

</txp:if_comments_allowed>
<txp:if_comments_disallowed>
<p>Comments are turned off for this article.</p>

</txp:if_comments_disallowed>

As you can see, it’s the same code as before, but simply outsourced to its own article-type
form. To call this form from the page, change the markup to the following:

<txp:if_individual_article>
<txp:article form="buzzblog_entry" />
<txp:article form="buzzblog_entry_comments" />

<txp:else />
<div id="buzzbloghead">
<h2>The Latest from the BuzzBlog</h2>
<p>Subscribe to the BuzzBlog</p>

</div>
<txp:article limit="1" />

</txp:if_individual_article>

This way, Textpattern renders the entire contents of the article and then renders the com-
ments afterward. Functionally, you make the same content manifest—at the end of the
day, you’ll get the blog post followed by its comments with either technique. In this
scenario, you simply split the duty between two article-type forms. Depending on your
development style and personal preference, this might or might not work for you.

Comment administration
The rise of reader feedback on blogs and news media sites has fostered a great dialogue
between content publishers and content consumers. People can express their reactions,
and authors can gain a sense of their audience’s taste and limits, to say nothing of the
ideas and additional information that contributes deeply to an article’s overall value.

But like most two-way communication, there is the good, the bad, and the ugly. You can
hope that the good kind of feedback is the norm—that is, commenting used for construc-
tive purposes. The bad kind of feedback usually starts with good intentions, but the
dialog becomes increasingly weighed down by personal attacks, flame wars, trolling, and
other seedy doings of unscrupulous readers. The ugly cannot even be considered feed-
back. It arrives on the back of blogging’s perennial bugbear: comment spam. The first is
encouraged, the second can be moderated, and the last must be stricken immediately
and ruthlessly from your site. Textpattern developers can accomplish all three within the
TXP platform.

COMMENTS

239

10

8326CH10.qxd 4/11/07 12:31 PM Page 239

Comment moderation

The right to freedom of the press grants people the opportunity to publish scathing, non-
sensical rants against their government and neighbors at will in any medium, without rep-
rimand from a governing body. While this works on a macro level for a society of millions,
it is less appealing for writers publishing on a more intimate website level.

Some websites are as open as can be, and comments of all quality and tone are accepted;
others are run by benevolent dictators who quietly operate from behind the curtain; still
others are administered by fanatical editors who delete comments with opposing view-
points with frighteningly little hesitancy. As a producer of content, it helps to identify
where you fall and to maintain that level of control with consistency. Your style of moder-
ation contributes to the tone and value of your site.

You can do several things to moderate comments on your site. Some are subtle, others are
drastic, but they all can contribute to better online conversations.

Publicly state your site’s commenting policy near the comment submission
form: This policy does not have to be a long diatribe of legalese, but it helps to
warn readers that if their comments are beyond the tolerance of the site, they will
be deleted. State your grounds for deletion, including language concerns for fam-
ily-oriented sites, linking to adult material, aggressive verbal attacks on other read-
ers, and so on.

Moderate comments after public submission: Basically, this means combing
through recent comments and manually deleting them after you come across inap-
propriate reader-submitted content. This is a manual process that is not efficient
time-wise, but might be sufficient for low-traffic sites with well-behaved citizens.

Moderate comments via email: On the Preferences tab (refer to Figure 10-1), the
first option under Comments is Moderate comments?. By default, this option is set
to No, but changing it to Yes means that every comment submitted to your site
arrives in your email first. (When users submit the comment, they are presented
with a note telling them the site is being moderated.) Implementing this feature
means that you must judge every comment on an individual basis and make them
visible from the Comments area of the Content tab. This technique should be
reserved for sites under fire from a disgruntled readership or a spam onslaught
because it can be frustrating from a user perspective and might upset the well-
behaved segment of the population.

Disable commenting capability on an individual article: This is very handy
when a particular thread gets out of hand. (Similarly, you can always tell
Textpattern to turn off commenting for all articles after a certain period of time.
This option is also found on the Preferences tab.)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

240

8326CH10.qxd 4/11/07 12:31 PM Page 240

Combating comment spam

The ability to receive reader comments on your site is tainted with the prospect of com-
bating an ever-growing amount of comment spam, an example of which is shown in Figure
10-5. Although spammers used to focus on bringing email servers to their knees, they have
now turned to the open market of blogs to carpet bomb sites with advertisements for
explicit sex and low-cost pharmaceuticals.

Textpattern used to fly under the radar of spammers, whose efforts were spent on more
popular blog software such as Moveable Type and Wordpress. But the release of version
4.0.3 in December 2005 also saw the first Textpattern-focused spam bots hit Textpattern-
driven sites, and reports of spam infiltration started popping up in the forums. The devel-
opment team has since worked (and continues to work) on spam-fighting technologies in
the product.

Figure 10-5. Typical comment spam can be nothing more than a
bunch of URLs.

Regardless, despite the software’s best efforts, some spam does get through. There is,
unfortunately, no blanket all-in-one solution, but there are some steps you as the site’s
admin and designer can take to reduce the amount of incoming spam:

Retain the comment preview function: The Textpattern comment submission
form requires readers to click preview before they can actually submit their com-
ment, and many developers try to remove this extra step to not annoy their read-
ers. While it is possible to remove this functionality through some hacking of the
source code, the preview-first, then-submit path is a powerful first line of defense
against spammers. Removing it is akin to taking away a castle’s walls and hoping the
moat is enough to stop the invading army.

COMMENTS

241

10

8326CH10.qxd 4/11/07 12:31 PM Page 241

Turn on comment expiration: In the Preferences pane (refer to Figure 10-1), dis-
able comments after a certain period of time. As a site’s pages age, they slowly gain
incoming links, and thus search engine popularity, making them top-shelf targets
for spammers who think hitting an older article won’t get noticed. Disabling com-
ments after four or six weeks eliminates this problem and causes minimal fuss for
readers, most of whom visit your site for more recent material.

Use spam-deterring plugins: As a last resort, you can employ plugins that can
help stem the tide of unwanted spam. Some plugins, such as asy_captcha (which
requires readers fill in a captcha code—the distressed, graphic letters spam bots
cannot read), are very intrusive to the user experience. Others, such as mrw_
spamkeywords_urlcount (which flags a comment as spam if there are too many
URLs in the content), work in the background.

Note that turning on comment moderation does not stop spam at all. While valuable for
moderating comments, noted previously, it alerts you only when spam arrives and pro-
vides no protection from the stuff in the first place.

Summary
Soliciting reader comments is a powerful tool for building site traffic because it brings
your audience into the content-creation fold and provides them a role in your site’s
growth. Textpattern provides a powerful set of tools for aggregating and moderating
reader feedback. An article’s ensuing conversations can add tremendous value to the orig-
inal article, as long as the comments don’t devolve into flame wars or become hot spots
for spam.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

242

8326CH10.qxd 4/11/07 12:31 PM Page 242

8326CH10.qxd 4/11/07 12:31 PM Page 243

8326CH11.qxd 4/4/07 5:08 PM Page 244

11 BEYOND THE BASICS

8326CH11.qxd 4/4/07 5:08 PM Page 245

The previous few chapters explored in some depth how Textpattern pulls the content and
structure together when building pages. Sections, categories, forms, and pages have all
been covered, and you should feel reasonably confident when building basic templates for
displaying your content. However, like most software, 80 percent of what you’ll use the
system for consumes only 5 percent of the content management system (CMS) function-
ality. In other words, even with all the work done to this point, you have barely scratched
the surface of what you can accomplish with Textpattern.

This chapter builds on the previous material’s concepts. Pages, sections, and forms are part
of the greater discussion going forward as you delve into the granular customization of
your site—tweaking error pages and search results, building dynamic meta information for
every page, and optimizing the templates inside pages to output various screens depend-
ing on where the user navigates. You’ll explore more Textpattern tags and plugins, and
learn more about a very powerful aspect of articles that has been largely left alone:
custom fields.

Creating error pages
Creating a custom error message in Textpattern is a fairly painless process. It is a very
important feature for many content-based sites and commercial businesses because they
don’t want to lose visitors because of a missing page. Smart web design dictates that you
create an error page that is useful—one that tells the user what’s wrong, but also guides
them in a helpful direction (unlike the Spartan error messages many servers default to, as
shown in Figure 11-1).

Figure 11-1. Many servers default to minimal and extremely unhelpful error messages.

Many articles have been written about designing a better error page, most notably “The
Perfect 404”1 on A List Apart. You’ll apply some of those principles to the Buzzbomb site
and draft a world-class 404 page that contains not only some helpful links but also a
search feature to speed visitors on their way.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

246

1. www.alistapart.com/articles/perfect404/

8326CH11.qxd 4/4/07 5:08 PM Page 246

Building a default error page

On a perfect Internet, pages would never get moved, links would always be relevant and
accurate, and sites would never go down. Unfortunately, the Web is a giant teeming organ-
ism that is constantly shedding old material, and the need for contingency pages has never
been more important. Designers redesign websites, and content gets shifted; people for-
get to pay their hosting, and entire domains disappear; servers get updated, and suddenly
scripts stop working; search engines reference old links in their cache; and humans (being
mistake-prone creatures) do a lot of misspelling when they type URLs.

Because of all this, web servers have several different “HTTP standard response codes” to
describe different problems. There are dozens (described in full at Wikipedia2), but only a
few are ever seen by users. The 4xx Client Error and 5xx Server Error series are most
prevalent and include these popular hits:

400: Bad Request

401: Unauthorized

403: Forbidden

404: Not Found

500: Internal Server Error

When a specific page has a problem loading or can’t be found, the server returns a 4xx
error; when there is a server-side problem—such as Textpattern (which is run on server-
side code) failing completely—a 5xx error is returned. Error 404 is, of course, the most
well known. To accommodate users, you’ll create a Textpattern-driven page that dynami-
cally figures out the error and returns appropriate text to let them know what went wrong.

In the default Textpattern installation, there is a page called error_default. This template
displays your error information, so you need to edit the content to match the design of
the rest of the site. You’ll adopt the code from the page static_page (which was used for
the terms of use page in Chapter 9) because it represents the existing site template with
the minimal amount of customization:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<txp:article form="static_text" />

</div> <!-- ends #content -->
<div id="sidebar">
<txp:output_form form="sidebar_tour" />
<txp:output_form form="sidebar_promo" />
<txp:output_form form="sidebar_friends" />

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

BEYOND THE BASICS

247

11

2. http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

8326CH11.qxd 4/4/07 5:08 PM Page 247

The only thing you need to change in the template is the <txp:article /> tag. Since the
Textpattern error pages do not look for article-related tags when they are parsed, you
have to replace the <txp:article /> tag with some plain HTML and some tags designed
for outputting error messages. The CMS provides three tags for just this purpose:

<txp:error_status /> outputs the actual error code with its requisite error mes-
sage (for example: 404 Not Found).

<txp:error_message /> outputs a short description of the error (for instance: The
requested page was not found).

<txp:if_status> is a conditional tag that can be used for customizing output
based on the actual error code. It employs the attribute status to determine which
error code trips the if-else argument.

Use the first two TXP tags in the new version of the page error_default:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<div class="staticentry">
<h3><txp:error_status /></h3>
<p><txp:error_message /></p>

</div>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You replaced the <txp:article /> tag with some manual HTML and two error-related
Textpattern tags. It represents a very basic incarnation of a TXP error page and would ren-
der something similar to the Buzzbomb page in Figure 11-2.

The template inside the page error_default could detect whatever error occurred and
dynamically display the appropriate text onscreen. While this is better than a generic
server-generated message, it’s not particularly helpful or user-friendly. The next section
discusses how to customize the error page.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

248

8326CH11.qxd 4/4/07 5:08 PM Page 248

Figure 11-2. Using two Textpattern tags, you can create a very basic default error page.

Customizing error pages

When creating error pages for your website, it’s helpful to put yourself in the mindset of
your users. While you know your site inside and out, newcomers might get lost and start
clicking links and manually entering URLs that (in a lapse of brilliance) you failed to
account for. When users get lost, they get frustrated, so it’s best to address the problem
immediately with a friendly error page that points people in the right direction before they
leave your site.

BEYOND THE BASICS

249

11

8326CH11.qxd 4/4/07 5:08 PM Page 249

A big part of that user-friendliness is messaging. While the general web populace kind of
gets what a 404 is, throw them onto a page with a 403 error and they’ll be as lost as a
horse jockey in a NASCAR race. Confusing people—intentionally or not—is never a good
strategy. You need to explain the meaning of errors, how they got there, and how users
can find the content they want. You can start by customizing the Textpattern error pages.

There are two basic ways to customize error page content. The first way is to create a new
page for each error variation you want customized, and the second is to use the condi-
tional <txp:if_status> tag on the error_default page to dynamically serve more intelli-
gent messaging. Both techniques are discussed in the following sections.

Option 1: Creating individual error pages
Textpattern recognizes the error_default page as the default template for all HTTP stan-
dard response codes. In addition, it also recognizes pages with error_### name formatting
as specific templates designed for whatever error number is in the name and uses it before
falling back on error_default.

For instance, the previous 404 page can be customized to be more user-friendly. For
Textpattern to use a different template when displaying only 404 errors, create a new page
called error_404. By design, Textpattern will use this page over error_default for just
404s.

The new page will have a similar structure as error_default, except that you can change
the messaging liberally. For instance:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<div class="staticentry">
<h3>Missing page! [<txp:error_status />]</h3>
<p>Unfortunately the page you are looking for has been moved, �

deleted or never existed in the first place. Please check your URL, �

and if you think there is a problem with our site, please �

contact us �

immediately. Otherwise, use our search box below or return to our �

homepage.</p>
</div>

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

The new messaging is far more user-friendly than the generic error message from TXP. The
design also retains the official HTTP standard response code generated by the
<txp:error_status /> tag, which can help webmasters and more technically savvy visitors
understand exactly what the server is saying.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

250

8326CH11.qxd 4/4/07 5:08 PM Page 250

Option 2: Using conditional tags on a single error page
While the technique of creating individual error pages using the error_### naming con-
vention works well, Textpattern provides developers with a slightly more efficient way of
customizing error messages. By using conditional tags on the single error_default page,
you can establish a single template that not only figures out what error has occurred but
also dynamically displays the content of your choice.

To accomplish this, use the <txp:if_status> tag, which is a conditional tag that allows for
simple if-else statements regarding errors. Its only attribute is status, the value of which
dictates whether the if-else argument is tripped. For instance, take a look at the follow-
ing code:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<div class="staticentry">
<txp:if_status status="404">
<h3>Missing page! [<txp:error_status />]</h3>
<p>Unfortunately the page you are looking for has been moved, �

deleted or never existed in the first place. Please check your URL, �

and if you think there is a problem with our site, please �

contact us �

immediately. Otherwise, use our search box below or return to our �

homepage.</p>
<txp:else />
<h3><txp:error_status /></h3>
<p><txp:error_message /></p>

</txp:if_status>
</div>

</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

You can see that this version adopts the new friendlier messaging from the previous exam-
ple, but also uses the colder TXP-generated messages for errors other than 404. Since 404
is by far the most common error people run into, it might be acceptable to customize the
message for only this particular problem and let the Textpattern default handle the rest.

At the end of the day, the individual error pages and the single error page with conditional
statements produce the same customized result for a 404, as seen in Figure 11-3. The tech-
nique you choose to use to create the new content is up to you.

BEYOND THE BASICS

251

11

8326CH11.qxd 4/4/07 5:08 PM Page 251

Figure 11-3. The customized 404 error page shows friendlier and more helpful text.

In the customized message you see in Figure 11-3, notice the reference to a search box
below the text. The next section covers adding search functionality to a site (using this
specific error page as the starting point) as well as customizing search results.

Adding search functionality and customizing
search results

As you know, one of the biggest advantages of using Textpattern as your CMS is its sepa-
ration of content and structure. Because it uses a database to store all the content in easily
managed chunks, it is relatively simple to add search functionality to the website. By using
the Textpattern built-in search construct, you can use the system’s speed in producing
search results as well as the dedicated tag library to customize those results.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

252

8326CH11.qxd 4/4/07 5:08 PM Page 252

In the previous section, you created a customized page for 404 errors, which is an impor-
tant aspect of building an accessible and usable site. However, one of the most important
things you can do on an error page is to provide users with a quick way to find the content
they need—or the closest approximation. Since the Buzzbomb site does not have a site
map, you can point them in only two directions: the home page (somewhat helpful) and a
search feature (very helpful). The following sections discuss adding that search box as well
as setting up a new section and page to customize the template of the results.

Adding the search box

Most sites have a search box in the header that is persistent across the entire domain, but
the site for Buzzbomb is small enough that the primary menu is enough to help users get
around intuitively. However, because Textpattern uses the same tags and code for the
search box—whether it’s on a single page or every page of the website—you can always
take the code you’re about to create and apply it site-wide.

To build the input field and button, Textpattern uses only a single tag: <txp:search_input />.
This tag has several key attributes: section, label, button, size, wraptag, and form. Add
the following to the error template:

<txp:search_input label="Search the Buzzbomb Site" �

button="Search" size="15" wraptag="p" section="search" />

These attributes dictate that the entire construct be wrapped in a <p> tag, that the text
above the input field say Search the Buzzbomb Site, that the input field have a size of 15,
and that the actual button text say Search. The section attribute, by contrast, does not
control any visual element; instead, it tells Textpattern to go ahead and use the section
search as the template for displaying the results. This tag with these attributes produces
the following HTML:

<form action="http://buzzbomb.textpatternsolutions.com/search/" �

method="get">
<p>Search the Buzzbomb Site

<input type="text" name="q" value="" size="15" />
<input type="submit" value="Search" /></p>

</form>

Customizing search results

Now that you created a search input using the <txp:search_input /> tag, it’s time to
design the template of the actual results. Out of the box, Textpattern handles search
results through the page default using the article-type form search_results (which is
included in the default installation), so even if you do not change anything else from this
point on, the Buzzbomb home page serves double-duty as the template for any searches
done from the error page.

If you want, you can use the page default to display custom search results using condi-
tional statements (specifically <txp:if_search>), but using that code can quickly junk up

BEYOND THE BASICS

253

11

8326CH11.qxd 4/4/07 5:08 PM Page 253

a template. To avoid these if-else statements in a single page, Textpattern enables
designers to choose an alternative section to house the template. You did just that in the
preceding tag by using the section attribute to direct search queries to the eponymous
section search.

For this to work, obviously you must first set up a section dedicated to this purpose and
a page to go along with it. The page search can be duplicated right from static_page, a
template that was used in previous tutorials. The customization of that page will be dis-
cussed in just a moment, but you’ll first create the section. Figure 11-4 shows what it might
look like from the back end.

Figure 11-4. Options for a dedicated search section

The new section uses the page search, which you’ll customize in just a moment. It’s also
recommended to select No for all options; this section is largely transparent from a func-
tional content standpoint and exists only for displaying the results.

Once you establish the section, you can customize the page search to which it is linked.
You’ll recognize the base template from several tutorials in Chapter 9, and true to form,
you change only a bit of code in the middle, like this:

<txp:output_form form="meta" />
<txp:output_form form="header+nav" />
<div id="center">
<div id="content">
<div class="staticentry">
<h3>Search Results</h3>
<txp:article searchform="search_results" />

</div>
</div> <!-- ends #content -->
<div id="sidebar">
... sidebar content ...

</div>
</div> <!-- ends #center -->
<txp:output_form form="footer" />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

254

8326CH11.qxd 4/4/07 5:08 PM Page 254

Although the bulk of the template stays the same, the <h3> tag is manually included this
time since it will never change, and a call to the form search_results was added using a
<txp:article /> tag and the searchform attribute. A search results page does not need
to be any more complicated than this simple setup. The bulk of the customization comes
in the form that displays the results.

Since search_results is an article-type form, you can use all the standard, article-specific
Textpattern tags such as <txp:title />, <txp:permalink />, and so on. In addition, the
system also provides several search-specific tags, including the following:

<txp:search_result_date /> returns the date. Functionally, it is the same as the
<txp:posted /> tag.

<txp:search_result_excerpt /> returns an excerpt of the post that shows where
the search term occurred in the text. For instance, in bringing up a search query for
the word promoter, the article “Viva La Baltimore” displays the following: . . . find the
place deserted, the doors locked and the promoter totally MIA. We piled . . . is also great.
We never did hear from the promoter, so getting paid’s gonna be fun. Up next: . . . You
can control the HTML tag used to highlight the search terms; by default, matching
words are emphasized with a tag.

<txp:search_result_title /> is a simple tag that returns the title of the article
already linked. It is functionally equivalent to <txp:permlink><txp:title />
</txp:permlink>.

<txp:search_result_url /> returns a linked version of the URL. It is the same as
explicitly writing out <txp:permlink><txp:permlink /></txp:permlink>.

These tags don’t offer any mind-blowing new functionality, but they can make your devel-
opment efforts slightly easier. In fact, several of them are employed in the new version of
the form search_results:

<h5><txp:search_result_title /> �

[Posted <txp:search_result_date />]</h5>
<p><txp:excerpt /></p>
<div class="resultdetail">
<p><txp:search_result_excerpt /></p>
<p><txp:search_result_url /></p>

</div>

Since Textpattern enables designers to mix and match standard article tags with search-
specific tags, the familiar <txp:excerpt /> tag is also included to let people read the
article’s synopsis as well as see the bits of text that include the search string. In the end,
the new form outputs a result like the one in Figure 11-5.

BEYOND THE BASICS

255

11

8326CH11.qxd 4/4/07 5:08 PM Page 255

Figure 11-5. The customized version of the search_results form uses standard article tags as
well as search-specific article tags.

Customizing metadata information
One of the great strengths of the Web is its “searchability,” the capability of search
engines to index and almost instantly retrieve a single document from a pool of billions.
This technology drives internal search engines (the ones responsible for a single site) and
external engines (the ones that crawl the entire Web, such as Google, MSN, and so on).

One of the key ingredients to this magic is metadata. Metadata is information about infor-
mation; it is a summary of a document’s contents that is attached to the document itself.
Just about any file type has the capability for some level of summarizing information:
Microsoft Office files, audio and video files, images, proprietary documents, and, of course,
HTML documents.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

256

8326CH11.qxd 4/4/07 5:08 PM Page 256

Just about every good web developer has some passing understanding of basic web meta-
data. In essence, there are three tags that search engines pay attention to: the document
title, the document description, and the document’s keywords. There are many, many
more tags as well (and even alternative metadata systems such as the Dublin Core Metadata
Initiative3), but this section focuses on the three most common (and most used) tags.

Splitting up the forms

You have probably noticed that all the examples of whole pages start with a single line of
code:

<txp:output_form form="meta" />

This misc-type form was created in Chapter 8 and was designed to hold all the web page’s
metadata as well as some core information (such as the DOCTYPE). At the time, it was not
important to tweak it too heavily because the focus was on developing the body of the
pages. The content of the form meta includes several empty metadata tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" �

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title></title>
<meta name="description" content="" />
<meta name="keywords" content="" />
<txp:css format="link" media="screen" n="buzzbomb" />
<link rel="stylesheet" type="text/css" href="#.css" media="print" />
<link rel="home" title="Home" href="/" />
<link rel="search" title="Search this site" href="#" />
<link rel="author" title="Send feedback" href="#" />
<link rel="contents" title="Site Map" href="#" />
<link rel="shortcut icon" type="image/ico" href="#" />

</head>

Now that the bulk of the site is built out, you can focus on this information by applying
many of the techniques used up to this point. It helps to think of the metadata section as
a miniature web page—you have static content and you have dynamic content. You need
to treat each differently, so you’ll find yourself mimicking some of the development strate-
gies from Chapter 8, in which you looked at a large block of code, identified different
types of content, and split the markup into more manageable pieces.

BEYOND THE BASICS

257

11

3. www.dublincore.org

8326CH11.qxd 4/4/07 5:08 PM Page 257

Moving the static metadata
The meta form contains a lot of information. Between the <head> tags, there is an obvious
split between static and dynamic content. You’ll start with the easy stuff and move the
static content over to its own form, which includes everything from the cascading style
sheet (CSS) call down to the shortcut icon:

<txp:css format="link" media="screen" n="buzzbomb" />
<link rel="stylesheet" type="text/css" href="#.css" media="print" />
<link rel="home" title="Home" href="/" />
<link rel="search" title="Search this site" href="#" />
<link rel="author" title="Send feedback" href="#" />
<link rel="contents" title="Site Map" href="#" />
<link rel="shortcut icon" type="image/ico" href="#" />

Move it into a form called meta_static. Since there is no dynamic data being pulled, you
can attribute it as a misc-type form. To pull the data back into the master meta form, use
a simple <txp:output_form /> tag, like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" �

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title></title>
<meta name="description" content="" />
<meta name="keywords" content="" />
<txp:output_form form="meta_static" />

</head>

Moving the bulk of the static material out of the way makes the immediate code more
manageable. While you could theoretically move the DOCTYPE out as well, it does not offer
any performance or code management advantages, so leave it as is. Next, you’ll focus on
the dynamic content.

Going dynamic
When creating dynamic metadata, it’s best to think of everything between the <head> tags
in an HTML document as its own web page. You’ll create an article-type form that a
<txp:article /> tag uses to pull in article-specific content, just as you did with the pri-
mary content many times in the past few chapters. In fact, you’ll mimic the previously
established structure very closely.

Before getting in too deep, let’s define what metadata content will be dynamic and where
that content is going to come from. Let’s examine each piece:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

258

8326CH11.qxd 4/4/07 5:08 PM Page 258

The web page title. This is the content that fits between the <title> tag at the
very top of the HTML document and is the text that appears in the top chrome of
a browser window. Textpattern has a built-in tag for precisely this function:
<txp:page_title />. It automatically figures out what type of page the user is on
(the home page, a section landing page, an individual article page, and so on) and
generates the appropriate text in the form of Site Name: Article Title. Your example
should output something like this: Buzzbomb: Viva La Baltimore.

The web page description. This is the text that fits inside the HTML string <meta
name="description" content="description goes here" />. Textpattern provides
no native tag for this content, so you use a custom field for storing the content and
the Textpattern tag <txp:custom_field /> for outputting it. Under the tab Admin
� Preferences � Advanced Preferences, there is an area for editing custom fields
(see Figure 11-6); the Buzzbomb site employed three (the first is meta_desc).
(These fields appear in the left column of the Content � Write tab.)

The web page keywords. This is the text that sits inside the keyword’s metatag
right below the meta description. Like the page title, Textpattern provides a built-in
means of collecting and displaying this content using the Keywords field in the
Write screen and the tag <txp:keywords />. The structure of the keyword’s HTML
tag will be similar to the description. (Textpattern also offers another tag called
<txp:meta_keywords /> that generates the HTML tag along with the value of the
Keywords field, but it works only with individual article pages. You need to manu-
ally define the HTML markup around the <txp:keywords /> tag to ensure that the
content is displayed on section landing pages and the home page as well.)

Figure 11-6. The Buzzbomb site uses three custom fields; the first is used for
the page’s meta description.

Now that you defined what metadata will be dynamic and where the content is going to
be pulled from, you can build the form meta_dynamic for outputting this information
(remember that because these fields are tied intrinsically to the article itself, the form will
be an article-type form):

<title><txp:page_title /></title>
<meta name="description" �

content="<txp:custom_field name="meta_desc" />" />
<meta name="keywords" content="<txp:keywords />" />

BEYOND THE BASICS

259

11

8326CH11.qxd 4/4/07 5:08 PM Page 259

The preceding code example is fairly basic and assumes that metadata information (par-
ticularly the description and keywords) was entered into every page. If Textpattern runs
across a page that does not have this information, the form still outputs the HTML tags,
but with nothing in the content attribute. To avoid rendering these empty HTML tags, use
the TXP tag <txp:if_custom_field> or a plugin such as chh_if_data4 to detect whether
content actually exists for the description and keywords.

This is an interesting form because the content is tied directly to the article, but is being
collected in very different ways. The title is automatically generated without any input
from the developer, the description is manually pulled from a custom field, and the key-
words are entered into the Keywords field. In the end, the previous code would render the
following markup for the article “Viva La Baltimore”:

<title>Buzzbomb: Viva La Baltimore</title>
<meta name="description" content="We had a crazy show in Baltimore �

-- gunshots, fire and a missing promoter were all part of the fun." />
<meta name="keywords" content="baltimore, shotgun, tour, amp fire, �

promoter, buzzbomb" />

Now that you established the article-type form to render the metadata, you need to link it
back to the form meta so it appears on every web page.

Bringing the metadata to the people

Throughout the development of the Buzzbomb site, you employed both normal articles
(such as “Viva La Baltimore”) and sticky articles (which have largely served as content for
sectional landing pages). You used conditional tags to make sure that they were output
under the proper conditions, but in the end, just about every page developed up to this
point has had some article attached to it.

The metadata works identically to the normal content. Most web pages have a unique arti-
cle—normal or sticky—that contains some content. Chapter 9 discussed developing an
archive page for blog entries. In Textpattern terms, it is a landing page for a section. You
created unique content for the section landing page and applied the template as a sticky
article. If you recall, a conditional tag told Textpattern what article to render based on
where the user was.

Regarding the title of the web page tag, there is no explicit need to use the Textpattern
<txp:page_title /> tag. Since this is an article-type form, you can pull any aspect of
an article, such as its title, its excerpt, the value of a custom field, the section and
category names, and more. You could conceivably write a custom string such as
<txp:sitename />: <txp:section title="1" />: <txp:title />. There is even a
plugin called ob1_title that produces more complex page titles.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

260

4. www.textpattern.org/plugins/530/chh_if_data

8326CH11.qxd 4/4/07 5:08 PM Page 260

<txp:if_individual_article>
<txp:article form="buzzblog_entry" />

<txp:else />
<txp:article status="sticky" form="simple" />

</txp:if_individual_article>

This simple code instructs the system to render any individual article with the form
buzzblog_entry and the sticky article for the section landing page with the form simple.
More importantly, the conditional tags prevent both the normal and sticky articles from
rendering at the same time. The trick to creating functional dynamic metadata is mimick-
ing the structure used to output the regular content. In this case, the meta form contains
the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" �

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<txp:if_individual_article>
<txp:article form="meta_dynamic" />

<txp:else />
<txp:article status="sticky" form="meta_dynamic" />

</txp:if_individual_article>
<txp:output_form form="meta_static" />

</head>

Notice that you retained the same structure in the markup, but referenced the same form
meta_dynamic in both cases. That is deliberate. Since the metadata format (title, descrip-
tion, and keywords) does not change whether it’s an individual article or a section landing
page, you can employ the same template for each. What is important is the fact that the
conditional tag <txp:if_individual_article> determines what content is being plugged
into the template.

Section landing pages and sticky articles
Here’s where it gets tricky. For section landing pages, you established that the metadata
will be housed in a sticky article. However, in some of the sections you created over the
past few chapters, you did not use a sticky article for any type of introductory copy in
the actual visible content. A prime example is the search results page shown earlier in this
chapter; navigating to that page as-is renders no metadata at all.

To get those section landing pages showing metadata, you need to create sticky articles for
them even if none of the content appears on the screen. These sticky articles have to
include only four things: an article title, content inside the Keywords field, content inside
the meta_desc custom field, and a section attribution. Textpattern pulls the sticky article’s
contents with the meta_dynamic form you established before, even though none of the
content may appear in the visible browser window.

Metadata for the home page
To throw another wrench into the system, defining metadata for the home page can be a
challenge because there is no tangible section to throw a sticky article at. As you progress

BEYOND THE BASICS

261

11

8326CH11.qxd 4/4/07 5:08 PM Page 261

through this final piece of the puzzle, keep in mind that there are multiple ways in
Textpattern to solve this problem—you can easily accomplish this same task with different
article, custom field, form, and section combinations. Simply follow one path that works
for this situation.

One of the weirder things about Textpattern is its handling of the default web page. While
it is a section in a technical sense (called default), you can’t attribute articles—normal,
sticky, or otherwise—specifically to the default section. To get around this for the
Buzzbomb site, you must manually create a “real” section specifically for the home page,
called homepage, as shown in Figure 11-7.

Figure 11-7. Creating a new section for handling metadata
on the home page

There are no special requirements for the section except that it must have On front page?
selected so articles attributed to the section actually show up on the home page. Once this
is created, you can create a new article specifically for the metadata information on the
home page: fill in a title, fill in content in the Keywords field, fill in content in the
meta_desc custom field, and select homepage as the section. Once you have the section
and article created, edit the form meta to ensure that it appears.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" �

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<txp:if_section name="">
<txp:article_custom section="homepage" status="sticky" �

form="meta_dynamic" />
<txp:else />
<txp:if_individual_article>
<txp:article form="meta_dynamic" />

<txp:else />
<txp:article status="sticky" form="meta_dynamic" />

</txp:if_individual_article>
</txp:if_section>
<txp:output_form form="meta_static" />

</head>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

262

8326CH11.qxd 4/4/07 5:08 PM Page 262

The previous code is wrapped inside another conditional tag: <txp:if_section>. This tag
checks to see whether the page that is loaded is the default page (using the name attribute
with an empty value5), and if so, to output the article you defined with the <txp:article_
custom /> tag. Right now, you’re probably shaking your head in bewilderment. In the spirit
of long-winded explanation, here are the two most obvious questions answered.

1. Why do you need to use the <txp:if_section> conditional tag? For the
Buzzbomb home page, you have two sections whose content is directed to appear
on the default page: buzzblog (which produces the actual blog excerpt visible on
the page) and homepage (the section you just created specifically for the metadata).
Both of these sections have sticky articles. If you were to leave the form meta alone,
using only the <txp:if_individual_article> tag, both sticky articles would have
their content called by the form meta, and you would end up rendering more than
one set of metadata HTML tags. The <txp:if_section> tag tells Textpattern, “Look,
if this page is the home page, use this fancy <txp:article_custom /> tag; other-
wise, go ahead and use the metadata template you defined for the rest of the site.”

2. Why do you need to use a <txp:article_custom /> tag? A plain <txp:article
/> tag would pull the content that is relevant to the current section. Unfortunately,
there are two relevant sections, buzzblog and homepage, so it would pull both and
you’d again end up with two sets of metadata tags on the web page. By using a
<txp:article_custom /> tag, you can use all the filters in the normal <txp:article
/> tag (most importantly, status and form), but define the section using the
section attribute as well—a critical differentiator that tells TXP to use only the
sticky article from the homepage section.

There are multiple ways to get the metadata to show up for the home page, but none of
them is completely obvious. Individual site architectures dictate how the overall metadata
templating is handled, and a variety of article and form combinations can be used to get
the correct content on the correct pages.

Summary
As you can see from this chapter, Textpattern goes deeper than a cursory glance would
suggest. Its flexible architecture allows for explicit control over the most granular details
of a website, as you learned when designing the error pages, search results, and a dynamic
metadata template. There are very few—if any—areas of customization the CMS does
not allow you to tackle, which makes it such a powerful and transparent system for site
developers.

BEYOND THE BASICS

263

11

5. For more information on the <txp:if_section> tag and its name attribute, consult the TXP tag
reference: http://textbook.textpattern.net/wiki/index.php?title=Txp:if_section.

8326CH11.qxd 4/4/07 5:08 PM Page 263

PART FOUR EXTENDING
TEXTPATTERN

8326CH12.qxd 4/11/07 12:32 PM Page 264

12 CUSTOM FIELDS

8326CH12.qxd 4/11/07 12:32 PM Page 265

This chapter covers all aspects of custom fields in Textpattern. You’ll learn how to define
and customize your custom fields, store content in your custom fields, and use the data
stored in your custom fields with both built-in Textpattern tags and Textpattern plugins.

The discography section on the website of your favorite fictional punk band, Buzzbomb,
will be used to demonstrate the uses of custom fields. The discography contains a listing of
the band’s albums, so each article in the section will represent a Buzzbomb album. The
title field will be used for the album name, and the article body will be used for a brief
description of the album. You will then use several custom fields to hold specific details—
including the record label, producer, and year of each album.

What are custom fields?
Since we’ve already covered the basics of creating a new article in Textpattern, you’re
familiar with the use of the standard fields in the Admin ä Content ä Write tab to store
data such as your article’s title, body, and excerpt. While these three fields are enough to
create a typical blog or news post, there are times when you’ll want to store additional
information. Although this information could be added to the article body, there would be
no way to enforce consistency in data entry, formatting, and styling across articles.

Textpattern’s answer to this dilemma is custom fields. Textpattern was designed with ten
additional unused fields attached to each article. By enabling one of these custom fields,
you’ll give yourself an extra spot to store data. Each custom field can hold up to 255 char-
acters of text data, and it’s up to you to define which of the 10 fields you want to use and
what they’ll be called.

Setting custom field names
The first step of using a custom field is to enable and name it within the Textpattern
administration interface. To configure the custom fields, take the following steps, as shown
in Figure 12-1:

1. Navigate to the Admin ä Preferences ä Advanced Preferences tab.

2. Find the Custom Fields section, which is the fourth section down on the page.

You’ll notice that by default, custom fields 1 and 2 are set up and named custom1
and custom2, respectively. The first three custom fields were used for other areas
of the Buzzbomb site, so you start with the fourth field.

3. Add the name RecordLabel in the Custom field 4 name text input.

4. Add the name Producer in the Custom field 5 name text input.

5. Add the name Year in the Custom field 6 name text input.

6. Click the Save button at the bottom of the page to store the new custom field
names to the database.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

266

8326CH12.qxd 4/11/07 12:32 PM Page 266

Figure 12-1. Custom field names are set in the Advanced Preferences tab.

Setting values in custom fields
Now that you’ve set up the three custom fields, you’re ready to start using them for con-
tent entry:

1. Navigate to the Admin ä Content ä Write tab.

2. Click the Advanced Options link to expand the menu.

3. For each custom field that was just activated, an additional text field appears under
the Advanced Options menu, which enables you to add your additional content to
each article that you post (see Figure 12-2).

4. Add the album name and details to the standard article title and body fields.

5. Add values to the three new custom fields RecordLabel, Producer, and Year.

6. Click the Publish button to save the article.

CUSTOM FIELDS

267

12

8326CH12.qxd 4/11/07 12:32 PM Page 267

Figure 12-2. Clicking the Advanced Options link expands the menu and makes custom fields visible.

Custom field tags
Now that you’ve defined your custom fields, you can post your first article to the discography
section, including data in your new custom fields. Once your article is posted, it’s time to
display that data on your article form. There are two tags that enable you to display the
custom field data on an article form:

<txp:custom_field /> is used to display custom field values.

<txp:if_custom_field /> is used to generate conditional output based on custom
field values.

Since custom fields are attached to articles, these two custom field tags must be used on
an article form or on a page within a <txp:if_individual_article /> conditional tag.

Using the <txp:custom_field /> tag

Start by using a simple article form that displays the title and body of your article, as
shown in Figure 12-3.

1. Navigate to the Admin ä Presentation ä Forms tab.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

268

8326CH12.qxd 4/11/07 12:32 PM Page 268

2. Click the Create new form link to create a new article form.

3. Use the following code to create the article form:

<h4><txp:title /></h4>
<txp:body />

4. Assign a name to the form. Call it discography.

5. Select article from the Type drop-down list and click the Save New button to save
the new form.

Figure 12-3. Create a new article form to display articles in the discography section.

With a basic article form in place, you can add the <txp:custom_field /> tag to display
the values from the three custom fields under the article body.

Declare the name attribute of the <txp:custom_field /> tag so that Textpattern knows
which custom field to display. You’ll notice that the names you specify in the tags match
the names of the fields that were already configured on the Admin ä Preferences ä

Advanced Preferences tab.

1. Add the following code to the bottom of the discography article form (as shown in
Figure 12-4):

<h4><txp:title /></h4>
<txp:body />
<p><txp:custom_field name="RecordLabel" /></p>
<p><txp:custom_field name="Producer" /></p>
<p><txp:custom_field name="Year" /></p>

2. Click the Save button to save your changes.

CUSTOM FIELDS

269

12

8326CH12.qxd 4/11/07 12:32 PM Page 269

Figure 12-4. Add custom field tags to the article form.

Using the <txp:if_custom_field /> tag

The <txp:if_custom_field /> tag enables you to generate conditional output based on
the value stored in a custom field. In its simplest form, the tag is used as follows:

<txp:if_custom_field name="foo">
<p><txp:custom_field name="foo" /></p>

</txp:if_custom_field>

In the preceding example, Textpattern checks the custom field named foo on the current
article to see whether it has any content. If it does, the code between the opening and
closing <txp:if_custom_field /> tags is included in the form output. If not, nothing is
included.

The <txp:if_custom_field /> tag also supports the <txp:else /> tag, which allows for a
traditional if/else structure to be built. For example:

<txp:if_custom_field name="foo">
<p><txp:custom_field name="foo" /></p>

<txp:else />
<p>bar</p>

</txp:if_custom_field>

As in the first example, Textpattern checks the field named foo on the current article
to see whether it has any content. If it does, the code between the opening
<txp:if_custom_field /> tag and the <txp:else /> tag is included in the form output. If

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

270

8326CH12.qxd 4/11/07 12:32 PM Page 270

not, the code between the <txp:else /> tag and the closing <txp:if_custom_field />
tag is included in the form output.

Extending the discography example

After having set up a basic article form to display your custom field data (refer to
Figure 12-4), you can enhance that form by using the <txp:if_custom_field /> tag
to conditionally display some additional data. You’ll start by demonstrating potential addi-
tions to the form and then update the discography form you already created.

You already set up the display of the Producer custom field on the form. Because the
<txp:custom_field /> tag displays only the value of the field, you need to add your own
label to the form as follows:

<p> Producer: <txp:custom_field name="Producer" /></p>

But what if there’s no value stored in the Producer field? You’ll end up with a label
without an associated value. To prevent this from happening, you can use the
<txp:if_custom_field /> tag as follows:

<txp:if_custom_field name="Producer">
<p>Producer: <txp:custom_field name="Producer" /></p>

</txp:if_custom_field>

The addition of the <txp:if_custom_field /> tag to the form prevents the Producer label
from appearing on the screen if there is no value stored in that field.

To take this one step further, if the Producer field is empty, you can display another mes-
sage instead of showing nothing:

<txp:if_custom_field name="Producer">
<p> Producer: <txp:custom_field name="Producer" /></p>

<txp:else />
<p>Self Produced</p>

</txp:if_custom_field>

Now, if there is no value stored in the Producer field, Self Produced displays on the screen
instead of showing nothing.

Finally, you can extend your original form by adding a conditional check to the
RecordLabel field. This check tests the field for a particular value and generates output
accordingly as follows:

<txp:if_custom_field name="RecordLabel" val="Apress Music">
<p>Record Label: <txp:custom_field name="RecordLabel" /> å

(current label)</p>
<txp:else />
<p>Record Label: <txp:custom_field name="RecordLabel" /></p>

</txp:if_custom_field>

CUSTOM FIELDS

271

12

8326CH12.qxd 4/11/07 12:32 PM Page 271

With this check in place, you can designate which record label is the band’s current label.
In order to load all these changes, you need to edit the discography form that you already
created, as shown in Figure 12-5.

1. Navigate to the Admin ä Presentation ä Forms tab.

2. Click the discography link in the form list to edit the form.

3. Update the form with the following code:

<h4><txp:title /><h4>
<txp:body />
<div class="albummeta">
<txp:if_custom_field name="RecordLabel" val="Apress Music">
<p>Record Label: <txp:custom_field name="RecordLabel" /> å

(current label)</p>
<txp:else />
<p>Record Label: <txp:custom_field name="RecordLabel" /></p>

</txp:if_custom_field>
<txp:if_custom_field name="Producer">
<p> Producer: <txp:custom_field name="Producer" /></p>

<txp:else />
<p>Self Produced</p>

</txp:if_custom_field>
<txp:if_custom_field name="Year">
<p>Year: <txp:custom_field name="Year" /></p>

</txp:if_custom_field>
</div>

4. Click the Save button to save your changes.

Figure 12-5. The updated form, including conditional tags

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

272

8326CH12.qxd 4/11/07 12:32 PM Page 272

Ordering articles by custom fields
Now that you’ve added articles to the discography section and built an article form to dis-
play each article, it’s time to generate an article listing to display your articles on the discog-
raphy page. You can use either the <txp:article /> tag or the <txp:article_custom />
tag to generate the list. Both of these tags enable you to specify a sort attribute to order
the article listing by any article field. While an article listing might typically be ordered by
posting date or title, you’ll order the list by a custom field.

In your discography section, you want to highlight the most popular albums first on the
page by ordering the discography listing by album sales. To do that, you can add one more
custom field and use that field as the value for the sort attribute on the article listing tag.

There are two key points to remember when ordering by a custom field:

The sort attribute must be a named column on the textpattern table in your
database. Each custom field is named custom_1, custom_2, custom_3, and so on in
the database. So, even if you call the seventh custom field Sales, you have to use
the database field name, custom_7, for sorting purposes.

The sorting is done alphabetically, which means that for sales of 50, 200, and 1100,
you have to enter 0050, 0200, and 1100 to maintain the proper ordering.

The new custom field and sorting can be set up by taking the following steps:

1. Navigate to the Admin ä Preferences ä Advanced Preferences tab, enter the name
Sales for Custom field 7 name, and save your changes.

2. Add a value to the Sales field for each article in the discography section.

3. Create an article listing tag that specifies the new sort field (<txp:article
sort="custom_7 desc" />) to order the albums by sales in descending order.

Now that your form code is complete, you can see the final results on the Buzzbomb
discography listing in Figure 12-6 and on the individual disc page in Figure 12-7.

CUSTOM FIELDS

273

12

8326CH12.qxd 4/11/07 12:32 PM Page 273

Figure 12-6. Buzzbomb discography listing page

Figure 12-7. An individual disc in the Buzzbomb discography section

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

274

8326CH12.qxd 4/11/07 12:33 PM Page 274

Plugins and custom fields
The following plugins might be useful if you are a regular user of custom fields. See
Chapter 13 for a detailed explanation of how to install and use Textpattern plugins.

rss_admin_show_adv_opts

The rss_admin_show_adv_opts plugin automatically expands the advanced article options
menu on the Admin ä Content ä Write tab (as shown in Figure 12-2) without you having to
manually click the Advanced Options link. If you’re a heavy user of custom fields, you
should use this plugin because it saves you a click each time you navigate to the Admin ä
Content ä Write tab to edit or create articles.

www.wilshireone.com/textpattern-plugins/rss-admin-show-adv-opts

sed_pcf

The sed_pcf plugin enables you to store multiple values in a single custom field. If you
find that you need more than ten custom fields, this plugin is the way to go. There are a
variety of options for storing data, which are all outlined in the plugin’s documentation.

http://txp-plugins.netcarving.com/plugins/packed-custom-fields

Summary
This chapter introduced you to Textpattern’s custom field functionality. It detailed the
steps needed to set up and use custom fields within a Textpattern installation. It also cov-
ered the <txp:custom_field /> tag and the <txp:if_custom_field /> tag and showed
how the tags can be used in Textpattern article forms.

One of the most powerful features of Textpattern, custom fields can be used in a variety
of ways to enhance your site’s content and layout. While the examples provided in this
chapter illustrate some of the most common uses of custom fields, you’re certain to come
up with creative ways to use custom fields to your advantage.

CUSTOM FIELDS

275

12

8326CH12.qxd 4/11/07 12:33 PM Page 275

8326CH13.qxd 4/11/07 12:33 PM Page 276

13 USING PLUGINS

8326CH13.qxd 4/11/07 12:33 PM Page 277

In this chapter, you’ll learn about the use of Textpattern plugins to extend the base func-
tionality of Textpattern. The chapter covers how to install and activate plugins, how to
view plugin documentation and source code, and how to uninstall plugins.

What is a plugin?
While Textpattern has a wide array of built-in features and tags, one of its best features is
its plugin architecture, which enables any number of additional features and tags to be
plugged into your Textpattern installation.

A Textpattern plugin is simply an additional piece of code that can be installed into
Textpattern. The plugin code is then loaded along with the base Textpattern code, giving
you access to all the tags and features within the plugin, just as if it were included in
Textpattern itself.

The benefit of using a plugin is that you have the ability to upgrade the version of
Textpattern you're using and still maintain the custom functionality that the plugin pro-
vides without modifying the base Textpattern code.

Public-side vs. admin-side plugins
Textpattern provides the ability to load plugins for use either on your public site or within
its own admin interface. When building a plugin, the author must designate whether the
plugin should be loaded on the public site only, or on both the public site and within
the admin interface. In addition to public-side and admin-side plugins, library plugins can
be created by plugin authors to store functions used by multiple plugins. Library plugins
do not offer any functionality on their own, but can be called by other public-side or
admin-side plugins.

Public-side plugins typically define a new tag or set of tags that you can use on your forms
and page templates as you build your site. Public-side plugins can also be used to catch
page requests or predefined events within Textpattern to introduce alternate behavior.
You’ll find plugins that cover a wide range of functions such as building date-based article
archives, building image galleries, creating contact forms, customizing Rich Site Summary
(RSS) feeds, customizing comments, and integrating with third-party statistics programs.
And these are just a few representative plugins.

Admin-side plugins are typically created to enable greater customization of the content-
entry process, to add site-management features, or to set preferences for more complex
plugins. For example, the glx_admin_image plugin adds several advanced image-editing
features and automatic thumbnail creation to the Content ä Images tab, while the
rss_admin_db_manager plugin adds a fully featured database management system to your
Textpattern install.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

278

8326CH13.qxd 4/11/07 12:33 PM Page 278

Finding plugins
The authoritative resource for Textpattern plugins is the Textpattern Resources website
located at www.textpattern.org. One section of the site is a compilation of plugins writ-
ten by dozens of plugin authors. All plugins (just like Textpattern) are free for you to use.
You can start by browsing through plugins by category or use the site’s advanced search
feature to locate a specific type of plugin.

Each plugin has its own page on the site, which typically includes a brief description of the
plugin, a link to the plugin author’s website for more information on the plugin, and a link
to download the plugin (see Figure 13-1).

Figure 13-1. Plugin page on the Textpattern Resources website

USING PLUGINS

279

13

8326CH13.qxd 4/11/07 12:33 PM Page 279

Installing plugins
When following a link to download a plugin, one of two things happens. Many plugins are
made available as a forced file download. If a plugin is made available in this format, your
browser prompts you to download the file to a local drive. All other plugins display within
your browser window, as shown in Figure 13-2.

Figure 13-2. Compiled plugin displayed in a browser

Whether the plugin is displayed within your browser or downloaded to a local drive, the
installation process is the same:

1. If you downloaded a plugin file to a local drive, open the file in a text editor and
copy the entire contents of the file to the clipboard.

2. If you’re viewing a plugin in the browser window, copy the entire contents of the
browser window to the clipboard.

3. Navigate to the Admin ä Plugins tab (shown in Figure 13-3).

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

280

8326CH13.qxd 4/11/07 12:33 PM Page 280

Figure 13-3. You install and manage your plugins on the Plugins tab.

4. Paste the contents of the clipboard into the textarea labeled Install plugin at the top
of the page.

5. Click the Upload button to load the plugin into your Textpattern install.

6. Once the plugin has been uploaded, you see a preview of the plugin code and help
so that you can verify the contents of the plugin and confirm that you want to con-
tinue the installation process, as shown in Figure 13-4.

Figure 13-4. A plugin installation preview

USING PLUGINS

281

13

8326CH13.qxd 4/11/07 12:33 PM Page 281

7. To complete the installation process, click the Install button at the bottom of the
page.

8. Once the plugin is installed, it appears in the plugin listing on the Admin ä Plugins
tab, as shown in Figure 13-5.

Figure 13-5. The newly installed plugin is now listed on the Plugins tab.

Activating plugins
Once a plugin is installed, its code and help are loaded into the txp_plugin table in your
Textpattern database. However, once a plugin is installed, it’s still not available for use on
your site, and you have to take one more step to activate the plugin.

Notice that there is a column on the Plugins tab labeled Active, and the plugin you just
installed has a value of No in that column. This tells you that the plugin code will not be
loaded by Textpattern as it builds pages. To activate the plugin, simply click the hyper-
linked No in the Active column, and the plugin is activated. After activation, the label dis-
plays Yes, as shown in Figure 13-6.

Figure 13-6. The newly activated plugin contains a value of Yes in the Active column.

To deactivate the plugin, just click the Yes link in the Active column. The ability to activate
and deactivate plugins within your Textpattern install can be very useful. Instead of having
to delete a plugin entirely, leaving a plugin in an inactive state enables you to easily turn it
back on without having to go through the installation process again.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

282

8326CH13.qxd 4/11/07 12:33 PM Page 282

Viewing plugin help
Each plugin you install probably contains documentation to help you learn how to use the
plugin. If you click the View link in the Help column of the Plugins tab listing, you are taken
to a plugin’s help page, as shown in Figure 13-7. If the plugin does not contain any help,
you see a message letting you know that there is no help for the plugin.

Figure 13-7. A plugin’s help page contains documentation about how to use the plugin.

The content of the help page varies depending on the plugin author, but you typically find
a brief explanation of the plugin and details on the various options available when calling
the plugin.

Viewing and editing plugin code
After an encoded plugin file is installed into Textpattern, you have an opportunity to view
and edit the plugin code. If you’re an aspiring plugin author, this can be a great way to
learn. But if you’re not an experienced PHP developer, editing plugin code on your live site
can be dangerous. Keep in mind that as soon as you make changes to plugin code, the
changes immediately take effect on your site. If you’re looking to make changes to a
plugin, it’s safest to make the changes on a test site first. If you want to write your own
plugin, see Chapter 14, which covers all the details necessary to get you started.

USING PLUGINS

283

13

8326CH13.qxd 4/11/07 12:33 PM Page 283

To view a plugin’s source code, click the Edit link next to the Help column of the Plugins tab
listing. The source code displays in a large textarea, as shown in Figure 13-8, enabling you
to edit and then resave the plugin code.

Figure 13-8. The plugin source code editor

If you made any changes, click the Save button at the bottom of the page when you finish.
Again, keep in mind that as soon as you save your changes, they immediately go into effect
on your site.

Once a plugin has been modified, it is noted on the Plugins tab, as shown in Figure 13-9.

Figure 13-9. If a plugin is resaved, it is marked as modified.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

284

8326CH13.qxd 4/11/07 12:33 PM Page 284

Uninstalling plugins
Once a plugin is installed, you always have the option to remove the plugin from your
Textpattern install. Clicking the X button in the rightmost column permanently deletes the
plugin from the txp_plugin table in your database, and the plugin will no longer be avail-
able for use.

Plugins tab
You have now learned about the functions that can be performed on the Plugins tab, but
there are a few more pieces of information on the page. Each plugin is listed by name and
includes the plugin’s author with a hyperlink to the author’s website, the plugin’s version,
and a brief description of the plugin, as shown in Figure 13-10.

Figure 13-10. The Plugins tab contains details about installed plugins.

Summary
This chapter introduced you to Textpattern plugins, which can be used to extend and
enhance the base functions and features provided by Textpattern on your public website
and with Textpattern’s own admin interface. It detailed the steps needed to locate, install,
and manage plugins.

Your first stop to find the latest plugins available for Textpattern is the Textpattern
resources website, located at www.textpattern.org. If you can’t find what you’re looking
for, keep reading; Chapter 14 steps you through the process of creating your own
Textpattern plugins.

USING PLUGINS

285

13

8326CH13.qxd 4/11/07 12:33 PM Page 285

8326CH14.qxd 4/11/07 12:34 PM Page 286

14 WRITING PLUGINS

8326CH14.qxd 4/11/07 12:34 PM Page 287

This chapter covers all the steps necessary to write, test, and release your own Textpattern
plugins. It starts by walking you through the steps you need to take to set up a local plugin
development environment. It then moves you through several plugin examples and refer-
ences time-saving helper functions within the Textpattern source code that you can use as
building blocks for your own plugins.

Before you start
If you’re interested in writing plugins for Textpattern, you should first have an under-
standing of PHP and experience coding and testing PHP scripts. If you have experience
programming in another language, PHP should be relatively easy to learn.

If you’re looking for resources to begin learning PHP or just need to brush up on your
skills, the following are good places to start:

PHP Manual at www.php.net/manual/en/

PHP Resources at www.friendsofed.com/book.html?isbn=1590597311

You should also have some familiarity with the MySQL database engine. Most plugins use
data stored in the Textpattern database in some fashion, which means that you need to be
familiar with SQL query syntax. While there are helper functions within the Textpattern
code that can be used instead of writing all your queries from scratch, a basic understand-
ing of SQL is necessary.

Digging in to the core code that drives Textpattern also helps you to gain an understand-
ing of some of the functions and global variables you have at your disposal. Although
you’ll learn more about these subjects later in the chapter, here are some online resources
that you’ll find useful:

Browse the Textpattern source code and revision history at http://dev.
textpattern.com/browser and http://dev.textpattern.com/timeline.

PHPXref generates source code documentation in an easily searchable HTML
format at www.phpxref.com/xref/textpattern.

Finally, before spending time writing your own plugin, make sure that someone else hasn’t
already done the job. The Textpattern Forum at http://forum.textpattern.com and the
Textpattern Resources site at www.textpattern.org are the best places to find details
about previously released plugins. Reading through the code of plugins that others have
developed can also help you to become familiar with different coding techniques.

Getting started
The first step of writing your own plugins is to set up a local development environment. In
Chapter 2, you learned how to set up a local Textpattern installation, which gives you a
testing ground for your new plugins. If you haven’t already completed your local

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

288

8326CH14.qxd 4/11/07 12:34 PM Page 288

Textpattern install, you should do that before reading any further. After you have a
local Textpattern install up and running, it’s time to start setting up your plugin develop-
ment environment.

Textpattern plugin template

The Textpattern plugin template is the first building block to put in place. You can find the
latest version in the Textpattern subversion repository at http://svn.textpattern.com/
development/4.0-plugin-template/. You can also find the latest download package and
discussion on the Textpattern forum at http://forum.textpattern.com/viewtopic.
php?id=10330. Download the template files to the computer you’ll be developing on.

The template actually includes three files:

zem_plugin.php is the actual template you use to create the plugins. The file has
been commented so that you can see where to place your PHP code, Textile-
formatted help, and plugin metadata.

zem_plugin_example.php contains examples of public and admin plugins. It isn’t
needed to create new plugins, but can be used for reference.

zem_tpl.php is the plugin compiler that you use to build the plugins for installation
into Textpattern. The compiler converts raw PHP code and help to a base64-
encoded string that will be pasted into the Admin ä Plugins tab. It will be used
when you’re ready to release the plugins to the Textpattern community.

You’ll dig in to the details of the plugin template files after you complete the local setup.

Local workspace setup

Once the plugin template has been downloaded locally, create a new directory that you’ll
use as the plugin-development workspace. For the rest of this chapter, c:\txp is used as
the directory name. If you’re working on an operating system other than Windows, just
replace the directory name with the one you created. Now that you have a new empty
directory, it is time to pull in the files you need to develop:

1. Copy the zem_tpl.php file into your c:\txp directory.

2. Copy the classTextile.php file from the texpattern/lib directory of the Text-
pattern installation into your c:\txp directory. This file enables you to create
Textile-formatted help that will be included in the compiled plugin.

That’s all you need to compile the plugins. Next, you configure the local Textpattern install
so that you can start developing and testing the plugins.

Local Textpattern setup

There are several helpful features built in to Textpattern that make life easier for plugin
developers. These features help you save time while you develop, test, and debug the
plugins.

WRITING PLUGINS

289

14

8326CH14.qxd 4/11/07 12:34 PM Page 289

The first feature is the Plugin cache directory. When configured, Textpattern looks in this
directory for plugin files and loads them as pages are built. This saves you from having to
reinstall the plugin each time you need to test new functionality. To set up the directory,
follow these steps:

1. Create a new directory within your Textpattern installation. (Create a new directory
called plugins in the textpattern directory of the install.)

2. In the Textpattern admin interface, navigate to the Admin ä Preferences ä

Advanced page.

3. Find the preference called Plugin cache directory path in the Admin section, as
shown in Figure 14-1.

4. Copy the full path of the directory you just created into that field. For example, my
local path is c:\apache\htdocs\textpattern\plugins.

5. Save your preferences.

Figure 14-1. Setting the Plugin cache directory path on the Advanced Preferences page

Next, you want to make sure that Textpattern is running in debug mode. Debug mode
gives you more-detailed error messages on the screen, which can help you fully test the
plugins and ensure that no errors are hidden.

1. In the Textpattern admin interface, navigate to the Admin ä Preferences ä Basic
page.

2. Find the preference called Production Status in the Publish section.

3. Set the value to Debugging, as shown in Figure 14-2.

4. Save your preferences.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

290

8326CH14.qxd 4/11/07 12:34 PM Page 290

Figure 14-2. Setting the Production Status on the Basic Preferences page

Plugin loading
Before you jump in and start coding the plugins, it is helpful to understand how
Textpattern loads and uses plugins.

When plugins are installed in the Textpattern admin interface on the Admin ä Plugins tab,
they are stored in the txp_plugin table in the Textpattern MySQL database. Each time
Textpattern renders a public-side or admin-side page, plugin code is loaded from the data-
base and evaluated. In the same way, plugin files that you place in the Plugin cache direc-
tory are loaded as pages are built. You can think of plugin loading as being analogous to
the PHP include function. All the plugin code is simply included along with the base
Textpattern code.

Plugins are loaded using the load_plugins() function that can be found in /textpattern/
lib/txplib_misc.php. The specific point where plugins are loaded during the page-
rendering process can be found on line 99 of /textpattern/publish.php for public-side
plugins and line 89 of /textpattern/index.php for admin-side plugins. If you track down
those lines of code, notice that there’s a difference in the way the function is called.

As you’ll see as you start working through the Textpattern plugin template, each plugin has
a type. A type code of 0 indicates a public-side only plugin, while a plugin with a type code
of 1 also includes admin-side code. Therefore, when the load_plugins() function is called
during admin-side plugin loading, a parameter of 1 is passed in so that plugins used on the
public side only are not loaded.

WRITING PLUGINS

291

14

8326CH14.qxd 4/11/07 12:34 PM Page 291

Basic plugin topics
The next section covers all the basics needed to write, test, compile, and release a simple
Textpattern plugin. For that, turn back to the local development environment and use the
zem_plugin.php file as the start to the plugin.

Textpattern plugin template explained

The zem_plugin.php file is the basis for all the plugins you create. The file contains several
explanatory comments. In the following code, I removed the comments to shorten the size
of the file. Once you’re familiar with how the template functions, you can do the same. I’ll
start by stepping through this file to explain how it should be used.

1 <?php
2 # $plugin['name'] = 'abc_plugin';
3 # $plugin['allow_html_help'] = 0;
4
5 $plugin['version'] = '0.1';
6 $plugin['author'] = 'Alex Shiels';
7 $plugin['author_uri'] = 'http://thresholdstate.com/';
8 $plugin['description'] = 'Short description';
9 $plugin['type'] = 0;
10
11 if (!defined('txpinterface'))
12 @include_once('zem_tpl.php');
13
14 if (0) {
15 ?>
16 # --- BEGIN PLUGIN HELP ---
17 h1. Textile-formatted help goes here
18
19 # --- END PLUGIN HELP ---
20 <?php
21 }
22
23 # --- BEGIN PLUGIN CODE ---
24
25 // Plugin code goes here. No need to escape quotes.
26
27 # --- END PLUGIN CODE ---
28 ?>

The first construct you notice throughout the file is an array called plugin. You’ll set sev-
eral different values on this array in the plugin template. These values correspond directly
to values in the txp_plugin table and will be shown when the plugin is installed on the
Admin ä Plugins tab.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

292

8326CH14.qxd 4/11/07 12:34 PM Page 292

Your work starts on line 2 with the $plugin['name'] field. By default, the plugin name is
taken from the plugin file name. For example, if the plugin file is named myplugin.php,
the plugin name is myplugin when installed into Textpattern. To maintain control over the
plugin name, I recommend uncommenting line 2 and setting your plugin name specifically.
Doing so enables you to maintain different versions of the file while keeping the same
plugin name.

On line 3, you can change the format for plugin help. By default, the help text you write is
passed through the Textile engine for formatting. By uncommenting line 3, the plugin help
is interpreted as raw HTML and is not parsed by Textile before display. But per the com-
ment in the plugin template, this is not a recommended setting. It is easiest to remove this
line from your plugin unless you have a need to change the setting.

Lines 5–9 contain specific details about the plugin, including the plugin name and descrip-
tion, the plugin type, and the plugin author’s name and website address. The first 4 lines of
this section should be easy enough for you to determine, and line 9 refers to the plugin
type covered earlier. Again, per the comments in the plugin template, the valid types are
the following:

0 is used for a regular plugin. The plugin is loaded on the public side only.

1 is used for an admin plugin. The plugin is loaded on both the public and admin
sides.

2 is used for a plugin library. The plugin is loaded only when include_plugin() or
require_plugin() is called.

The bulk of the work you do in the plugin template occurs between lines 16 and 27 in
the template file. All the help text goes between the lines that read # --- BEGIN PLUGIN
HELP --- and # --- END PLUGIN HELP --- on lines 16 and 19. All the plugin code goes
between the lines that read # --- BEGIN PLUGIN CODE --- and # --- END PLUGIN CODE ---
on lines 23 and 27. Be sure you don’t alter any of these lines because they are used by the
plugin compiler.

Now that the plugin template has been reviewed, you can move on to creating the first
basic plugin.

Writing a basic plugin

The first step of writing the plugin is to copy the plugin template into the Plugin cache
directory. Once you copy the template, start by renaming the file so that you can identify
your plugin and its version. In this case, name the file rss_hello_world-0.1.php so that
you can easily tell that this is version 0.1 of the rss_hello_world plugin.

Notice that the name of the plugin is preceded by a three-character code. To easily iden-
tify the author of plugins and to prevent name collisions, each plugin author selects a
unique three-character prefix that precedes the name of the plugins. Typically, the code is
an author’s initials or nickname, but that’s up to you. For all the plugin examples in this
chapter, I’ll be using my standard prefix of rss, which represents my initials. Before you

WRITING PLUGINS

293

14

8326CH14.qxd 4/11/07 12:34 PM Page 293

begin writing your own plugins, search through the list of existing plugins on the
Textpattern Resources website at www.textpattern.org to ensure that the prefix you want
to use hasn’t been taken.

Now that you have the plugin template file set up, it is time to start coding. Here’s
the code for the first basic plugin. When called from a page template or form, the
<txp:rss_hello_world /> tag displays the text Hello Textpattern World, my name is
Anonymous on the page.

<?php
$plugin['name'] = 'rss_hello_world';
$plugin['version'] = '0.1';
$plugin['author'] = 'Rob Sable';
$plugin['author_uri'] = 'http://www.wilshireone.com/';
$plugin['description'] = 'A basic Textpattern plugin.';
$plugin['type'] = 0;

if (!defined('txpinterface'))
@include_once('zem_tpl.php');

if (0) {
?>
--- BEGIN PLUGIN HELP ---

h1. Hello, Textpattern World

This is a basic Textpattern plugin.

--- END PLUGIN HELP ---
<?php
}
--- BEGIN PLUGIN CODE ---

function rss_hello_world($atts) {
extract(lAtts(array(
'name' => 'Anonymous',

),$atts));

return 'Hello Textpattern World, my name is '.$name;
}

--- END PLUGIN CODE ---
?>

Starting from the top of the file, you see that the basic plugin metadata has been defined
based on the name and version of the plugin, along with my name and website URL. Some
basic help has been defined, but for now, skip down to the plugin code.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

294

8326CH14.qxd 4/11/07 12:34 PM Page 294

Plugins as tags
Each function you write in your plugin code corresponds to a tag that can be used on your
Textpattern page templates and forms. In the first example, since a function called
rss_hello_world was created, you can call the plugin from Textpattern pages using the
tag <txp:rss_hello_world/>.

Self-closing vs. enclosing plugin tags
Just as with standard Textpattern tags, you have the ability to create a self-closing plugin
tag or an enclosing plugin tag. In the example already begun, you are creating a self-
closing tag. You can easily discern a self-closing tag from an enclosing tag based on the tag
function’s signature. If you attempt to use a self-closing tag as an enclosing tag, you
receive a tag_error notification on the screen.

A self-closing tag accepts only an array of variables as a parameter. All self-closing plugins
are called as follows:

<txp:rss_self_closing_tag />

An enclosing tag accepts an array of variables along with the addition of a second param-
eter to the function. The second parameter holds the content you’ll display between the
opening and closing tags of the plugin. That content can include plain text, HTML, core
Textpattern tags, or plugin tags.

<txp:rss_enclosing_tag>
Content
</txp:rss_enclosing_tag>

You’ll see an example of an enclosing plugin tag later in this chapter, but for now continue
through the self-closing plugin example.

Plugin attributes
The first construct you see in the plugin code is as follows:

extract(lAtts(array(
'name' => 'Anonymous',

),$atts));

Although just a few lines, the preceding code is used to initialize the local variables used in
the plugin and to do some basic validation of the attributes specified on the tag. The
lAtts() function can be found in /textpattern/lib/txplib_misc.php if you want to step
through the source.

The first thing to notice is the definition of a name/value pair. Typically, plugins have sev-
eral of these pairs defined. These pairs enumerate the valid attributes that can be specified
when calling the plugin and the default values for those attributes if they are not specified.

WRITING PLUGINS

295

14

8326CH14.qxd 4/11/07 12:34 PM Page 295

For example, the preceding code defined a local variable called name that has a default
value of Anonymous. When the plugin is called, if an attribute called name is specified, the
value passed in to the plugin is assigned to the name variable. However, if the plugin is
called without specifying the name attribute, the name variable is assigned a default value of
Anonymous. Each name specified in the array translates to a local variable by the same
name.

The preceding code also verifies that the attributes specified when calling the plugin are
valid. In this example, an attribute called name is the only valid attribute that can be passed
into the plugin. The array of name/value pairs that I specified for the plugin will be com-
pared against the $atts array that is passed in to the plugin code from Textpattern. This
array contains all plugin attributes and their values as specified when the plugin tag is
called. So if I attempt to call the plugin using the call <txp:rss_hello_world
firstname="Rob" />, I receive an error message to let me know that firstname is not a
valid attribute of the plugin.

Once this code has been executed, you are left with a collection of local variables that can
be used in the plugin. The values were determined either by those passed in when calling
the plugin or by the defaults that you specified.

Plugin output
Each tag handler plugin can return output to the Textpattern page. In the example, you see
this in the following line of code:

return 'Hello Textpattern World, my name is '.$name;

The output of the plugin is displayed as a string, so you should ensure that the value
returned is a string, not a PHP object. Using the return statement is a must because it
places the string within the flow of the page as it is built. If you were to use a PHP output
function such as echo or print_r, the output would be placed outside of the Textpattern
page and appear at the top of your browser window.

Testing the first basic plugin

Because you placed the plugin file in the Plugin cache directory, it is now available to be
used within Textpattern. At this point, you add the plugin tag to a Textpattern page for
testing.

1. Start by creating a new page on the Content ä Pages tab called plugin-test. Copy
the existing default page and remove the HTML within the <body> tags, which leaves
you with the shell of a basic Textpattern HTML page.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" å

content="text/html; charset=utf-8" />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

296

8326CH14.qxd 4/11/07 12:34 PM Page 296

<link rel="stylesheet" href="<txp:css />" å

type="text/css" media="screen" />
<title><txp:page_title /></title>

</head>
<body>

</body>
</html>

2. Next, create a new section on the Content ä Sections tab called plugin-test and
assign the new plugin-test page to the section. The configured section is shown in
Figure 14-3.

Figure 14-3. Creating a new section for plugin testing

3. Finally, add a call to the plugin within the <body> tags of the page and test the
output. You can call the plugin in its simplest form as follows: <txp:rss_hello_
world/>.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" å

content="text/html; charset=utf-8" />
<link rel="stylesheet" href="<txp:css />" å

type="text/css" media="screen" />
<title><txp:page_title /></title>

</head>
<body>
<txp:rss_hello_world />
</body>
</html>

This code gives you the HTML output shown in Figure 14-4.

WRITING PLUGINS

297

14

8326CH14.qxd 4/11/07 12:34 PM Page 297

Figure 14-4. Basic plugin output with no attributes specified

The plugin call did not specify the name attribute, so the output includes the default value
of Anonymous. At this point, you’ve created and used a new Textpattern plugin.

Calling the plugin with attributes
Next, you’ll update the plugin call to pass in a name attribute. The code in the page tem-
plate changes as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" å

content="text/html; charset=utf-8" />
<link rel="stylesheet" href="<txp:css />" å

type="text/css" media="screen" />
<title><txp:page_title /></title>

</head>
<body>
<txp:rss_hello_world name="Rob" />
</body>
</html>

This code results in a new page, as shown in Figure 14-5.

Figure 14-5. Basic plugin output with the name attribute specified

Since you now specified the name attribute, the default value has been overridden by the
value you passed in when calling the plugin.

Calling the plugin with incorrect attributes
As discussed earlier, the plugin code validates the attributes passed in to the plugin. If an
invalid attribute is used, an error is shown in your browser window. To demonstrate this,
change the plugin to include an invalid attribute called firstname. The new page template
code changes as follows:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

298

8326CH14.qxd 4/11/07 12:34 PM Page 298

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" å

content="text/html; charset=utf-8" />
<link rel="stylesheet" href="<txp:css />" å

type="text/css" media="screen" />
<title><txp:page_title /></title>

</head>
<body>
<txp:rss_hello_world firstname="Rob" />
</body>
</html>

This code results in a new page, as shown in Figure 14-6.

WRITING PLUGINS

299

14

Figure 14-6. Basic plugin output with the invalid firstname attribute specified

In this case, the error message displayed is very clear. You have specified an unknown tag
attribute called firstname when calling the plugin. The rest of the page traces the error
back to its origin. The important part of this message is the second line, which tells you
that the error occurred on line 28 of the rss_hello_world plugin when calling the
lAtts() function. The error messages displayed by Textpattern are very helpful when
debugging and testing plugins.

Plugin errors
Aside from the error message you just received, any error you encounter in your plugin
code is displayed in your browser window. For example, if you hadn’t properly ended a
line of code with a semicolon, you would see an error similar to the one shown in
Figure 14-7.

Figure 14-7. A plugin parse error from a plugin in the Plugin cache directory

8326CH14.qxd 4/11/07 12:34 PM Page 299

The benefit of coding and testing the plugin while it is in the Plugin cache directory instead
of installed into Textpattern as a standard plugin is that you receive a much clearer error
message. If you were to install the plugin, instead of leaving it in the Plugin cache direc-
tory, the error would look as shown in Figure 14-8.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

300

Figure 14-8. A plugin parse error from an installed plugin

As you can see, you no longer have the same level of visibility in the error message. While
the first message gave you the exact line number where the error occurred, the most you
learn from the second message is that the error came from somewhere within the
rss_hello_world plugin. The second message is much less specific than the first message
you received because the plugin is being loaded from the database instead of the file
system.

Debugging
During the course of development, it is probably necessary to inspect the contents of vari-
ables within the code that would not normally be part of the plugin’s output. Textpattern
makes this easy with the convenient dmp() function. Based on the plugin code you wrote
earlier, you could dump the attributes passed in to the plugin to the screen by using the
following code:

dmp($atts);

That code results in the following output:

array (
'name' => 'Rob',

)

Compiling and releasing the plugin

Now that the plugin is successfully written and tested in the Plugin cache directory, it is
time to make it available for others to download. There are two ways in which most plug-
ins are made available to others in the Textpattern community.

Since you’ve been working on the plugin in the Plugin cache directory, start by copying the
rss_hello_world-0.1.php file back into the workspace at c:\txp. You now have three
files in the directory: zem_tpl.php, classTextile.php, and rss_hello_world-0.1.php.
The easiest way to make the new plugin available for download is to copy all the plugin
files in the local workspace directory to a public directory on a website. Once the files are
there, point the browser to the plugin file. The output in the browser window is the com-
piled plugin, as shown in Figure 14-9.

8326CH14.qxd 4/11/07 12:34 PM Page 300

Figure 14-9. The compiled plugin in a browser window

At this point, anyone can copy the contents of the browser window, paste them into the
Install plugin textarea on the Admin ä Plugins tab, and click the Upload button to start
the plugin install process. After uploading the plugin, the plugin code and Textiled help
text can be previewed, as shown in Figure 14-10. Complete the plugin install process to see
how the new plugin will look when it is installed in Textpattern.

Figure 14-10. Plugin preview while installing the rss_hello_world plugin

WRITING PLUGINS

301

14

8326CH14.qxd 4/11/07 12:34 PM Page 301

After completing the install, the plugin must be activated. Once the plugin is active, it is
now available for use.

New plugin installed in Textpattern

Now that you installed the new plugin, it is shown on the Admin ä Plugins tab. In
Figure 14-11, you can see that rss_hello_world is the only installed plugin.

Figure 14-11. The rss_hello_world plugin after installation

The metadata you defined in the plugin template—including the plugin name, description,
version, and author—translates directly to the information you see on this tab. The author
name has also been hyperlinked using the URL that you provided in the template.

Viewing plugin help
The help text that you entered into the plugin template can be viewed (see Figure 14-12)
by clicking the View link in the Help column.

Figure 14-12. The rss_hello_world plugin help

While the rss_hello_world plugin doesn’t have extensive help, you have the ability to add
as much as you need to your plugin help. You also have the ability to add any HTML for-
matting necessary to make your help text easy to read and understand.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

302

8326CH14.qxd 4/11/07 12:34 PM Page 302

A basic enclosing plugin

Now that you created the first self-closing plugin tag, adapt the example to become an
enclosing tag. In addition to converting rss_hello_world to an enclosing plugin, you can
keep its capability to be a self-closing plugin as well. Here’s the new code:

function rss_hello_world($atts, $thing = NULL) {
extract(lAtts(array(
'name' => 'Anonymous',
'message' => 'Hello Textpattern World, my name is',
'wraptag' => 'p',

),$atts));

if ($thing === NULL) {
return doTag($message.' '.$name, $wraptag);

}

return doTag(parse($thing).' '.$name, $wraptag);
}

The first change is to add the second parameter, called $thing, to the function. The addi-
tion of this second parameter is needed to make the plugin an enclosing tag. When a page
is rendered, Textpattern assigns the content between the opening and closing tags of the
plugin to the $thing variable.

Notice a few other additions to the plugin. You now have two additional attributes avail-
able when calling the plugin. The first is called message and is used to display default text
when the tag is called as a self-closing tag. The second is called wraptag and is used to
wrap the message in an HTML tag.

If you want to force the plugin to be called as an enclosing plugin, you can return an error
message when the $thing variable is NULL. But to demonstrate both the self-closing and
enclosing varieties of the plugin, update the page code as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" å

content="text/html; charset=utf-8" />
<link rel="stylesheet" href="<txp:css />" å

type="text/css" media="screen" />
<title><txp:page_title /></title>

</head>
<body>
<txp:rss_hello_world wraptag="strong"/>

<txp:rss_hello_world name="Rob">
What's up world, I'm
</txp:rss_hello_world>
</body>
</html>

WRITING PLUGINS

303

14

8326CH14.qxd 4/11/07 12:34 PM Page 303

The updated page template generates output as shown in Figure 14-13.

Figure 14-13. Plugin output as both a self-closing and an enclosing tag

In the first call to the plugin, you use a self-closing tag and specify the wraptag attribute,
which gives you the default message wrapped with tags. In the second call to the
plugin, you use enclosing tags and specify the name attribute. In this case, the name and
message specified are displayed wrapped with the default <p> tags.

Advanced plugin topics
Now that you know the basics of writing plugins, you can move on to some more-
advanced topics. You’ll learn that there are endless ways in which you can enhance and
extend Textpattern’s core. You’ll explore some examples with the concepts covered in this
section.

Conditional tags

A conditional tag is a more-advanced form of enclosing tag because it enables you to
control the execution of one piece of code when the condition is true and another piece
of code when a condition is false. You can think of a conditional Textpattern tag as a typ-
ical if/else programming statement. There is a variety of conditional tags built in to the
Textpattern core. You can easily find these tags as they will begin with <txp:if.

To demonstrate a simple conditional tag, create the rss_if_positive tag, which accepts a
number as a parameter and performs a conditional check to determine whether the num-
ber is positive. The code for the tag is the following:

function rss_if_positive($atts, $thing) {
extract(lAtts(array(
'number' => 0,

),$atts));

$condition = ($number > 0) true : false;
return parse(EvalElse($thing, $condition));

}

The magic here happens in the EvalElse() function, which you can find in the
/textpattern/lib/txplib_misc.php file. After evaluating the condition, you let
Textpattern know whether it was true or false so the appropriate output can be parsed
and displayed. Call the plugin as follows:

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

304

8326CH14.qxd 4/11/07 12:34 PM Page 304

<txp:rss_if_positive number="1">
It's positive!
<txp:else />
It's negative!
</txp:rss_if_positive>

In this case, the phrase It’s positive! is included in the page output because the condition is
true. If, however, you changed the tag call as follows, the output would change to It’s neg-
ative! because the condition would be false:

<txp:rss_if_positive number="-1">
It's positive!
<txp:else />
It's negative!
</txp:rss_if_positive>

Callback functions

A callback function is a function that is passed as an argument to another function. The
callback function is then executed at some point by the function it was passed to. This
powerful concept enables plugin authors to write code that will be executed by
Textpattern based on certain events. There are several callback functions available on the
public side and even more available on the admin side.

The register_callback($func, $event, $step='', $pre=0) function is located in the
/textpattern/lib/txplib_misc.php file. The $func and $event arguments are required,
while $step and $pre are optional for admin-side callbacks. The functions arguments are
used as follows:

$func is the function you want Textpattern to call. This will be where the bulk of
your plugin code is located.

$event is the Textpattern event that will call back into your function.

$step. On the admin side, an event might have multiple steps. You can target spe-
cific steps within an event for a finer level of control.

$pre. On the admin side, if $pre is set to 1, the callback function will be called
before the page is rendered instead of after.

When you register a callback function, you have the opportunity to completely override
base Textpattern functionality or add your own features on top of the Textpattern core.

Public-side callback events
Public-side events are not as easy to recognize as admin-side events because they are
buried in the Textpattern source code. The callback events currently available on the pub-
lic side are these:

WRITING PLUGINS

305

14

8326CH14.qxd 4/11/07 12:34 PM Page 305

pretext is called at the beginning of the pretext() function, which parses the URL
to initialize variables used to build the page.

textpattern is called at the beginning of the textpattern() function, which builds
the pages based on values set in the pretext() function.

comment.form is called before the comment form is added to a page.

comment.save is called before a comment is saved to the database.

rss_entry is appended to the end of each entry in the Rich Site Summary (RSS)
feed.

atom_entry is appended to the end of each entry in your Atom feed.

The pretext and textpattern callback events can be used to override the standard pro-
cessing in the pretext() and/or textpattern() functions. This process is commonly used
to override Textpattern’s built-in URL handling to enable additional URL schemes to be
supported. For example, the rss_suparchive plugin uses this technique to support date-
based archives, and the rss_unlimited_categories plugin uses it to support /section/
category/title URL schemes.

The comment.form and comment.save events are primarily used to combat comment spam.
For example, the mrw_spamkeywords_urlcount plugin analyzes keywords and link patterns
in comment text to prevent spam from being posted and saved to the database.

To register a callback function with one of these public-side events, you need to add the
following to your plugin code:

register_callback('rss_my_function', 'pretext');

Just replace the first argument with your function name and the second argument with the
event to which you want to attach your callback. You typically find callbacks declared at
the top of plugin’s code, where they’re easy to spot.

Admin-side callback events
The events and steps available on the admin side are much easier to find. In fact, you’ve
been looking at them since the first time you logged into the admin interface, but you
might not have known it. For example, take the URL of the Content ä Write tab, which
ends in textpattern/index.php?event=article. You can clearly see from the URL that
the article event is being used to identify this tab. If you pull up an article that you
already saved in order to make changes, notice a URL ending in /textpattern/index.
php?event=article&step=edit&ID=nnn. Again, you can see that the article event is
being used, but you now have the addition of the edit step.

To register a callback function to be executed when you edit an existing article, make a call
as follows:

register_callback('rss_my_admin_function', 'article', 'edit');

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

306

8326CH14.qxd 4/11/07 12:34 PM Page 306

In addition to the step name that can be determined from looking at the URL, you can also
determine step names by inspecting the admin interface source code. Each admin-side event
is handled by a PHP script located at /textpattern/include/txp_EventNameGoesHere.php.
For example, the article event is handled by a script located at /textpattern/
include/txp_article.php. If you look at the top of that script, you’ll find the following
switch statement:

switch(strtolower($step)) {
case "": article_edit(); break;
case "create": article_edit(); break;
case "publish": article_post(); break;
case "edit": article_edit(); break;
case "save": article_save(); break;

}

By reading through the switch statement on the $step variable, you can see that there are
steps called create, publish, edit, and save that are handled by the article_edit(),
article_post(), and article_save() functions (also located in the txp_article.php
file). To have a callback function executed when a new article is posted, the following call
should be made:

register_callback('rss_my_admin_function', 'article', 'publish');

This type of call is used by the rss_unlimited_categories plugin to save and retrieve cat-
egories from the database when articles are posted and edited. You’ll learn more about
that plugin later in this chapter.

All admin-side events and steps can be used to register callback functions with the excep-
tion of the plugin event. The plugin event is used to handle the Admin ä Plugins tab and
does not load plugins and therefore register for callbacks. This was done to allow for the
deactivation of any plugins that might be misbehaving.

Admin-side tab registration
In addition to adding your own callback functions on the admin side, you also have the
ability to add new tabs to the admin interface that will appear under the extensions menu
(see Figure 14-14).

The new tabs can be used for any number of purposes, including setting preferences for a
public-side plugin, managing and backing up your MySQL database, manipulating images,
and customizing the look and feel of the admin interface.

WRITING PLUGINS

307

14

8326CH14.qxd 4/11/07 12:34 PM Page 307

Figure 14-14. Admin plugins that have registered new tabs under the Extensions tab

To register a new tab, call another function in the /textpattern/lib/txplib_misc.php
file called register_tab($area, $event, $title). After registering your new tab, you then
register a callback function to handle the event for the new tab. The code that creates the
tabs for the rss_admin_db_manager plugin (refer to Figure 14-14) is as follows:

if (@txpinterface == 'admin') {
register_tab("extensions", "rss_db_man", "DB Manager");
register_callback("rss_db_man", "rss_db_man");

register_tab("extensions", "rss_sql_run", "Run SQL");
register_callback("rss_sql_run", "rss_sql_run");

register_tab("extensions", "rss_db_bk", "DB Backup");
register_callback("rss_db_bk", "rss_db_bk");

}

The code is wrapped by an if statement, which ensures that the code is executed only
within the admin interface. The arguments passed in to the register_tab() function are
used as follows:

$area is the top-level tab under which your new tab will be created. Plugins are
typically added under the Extensions tab.

$event is the new event that will be used for your tab.

$title is the display name for the new tab.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

308

8326CH14.qxd 4/11/07 12:34 PM Page 308

After registering the new tab for a particular event, a callback is registered to handle that
event.

Helper functions and global variables

In the examples presented throughout this chapter, you used several functions from the
Textpattern source code. As plugins are loaded and executed, you’ll have access to any and
all functions and global variables that have been defined in the Textpattern source.

There is a variety of common functions that can be used for anything from querying the
Textpattern database to generating HTML output. The more time you spend familiarizing
yourself with the code that others have already written, the less time you’ll spend writing
your own code.

As your pages and forms are parsed and rendered, you’ll also have access to global vari-
ables that can be used to generate custom output. Global variables are used to hold every-
thing from general site preferences and configurations to page and form specific settings.

Appendix B contains a detailed listing of commonly used helper functions from the
Textpattern source and the global variables that you’ll have access to.

Real-world examples
Now that you know how to create Textpattern plugins, it is time to take a look at a few
actual plugins to show how they can be used to enhance your Textpattern sites. One of the
best ways to learn how to write plugins is to examine and learn the techniques of other
plugin developers. The plugins listed cover a wide range of possibilities to get you started.
All the plugins can be found on the Textpattern Resources site at www.textpattern.org or
at the address noted in the following sections.

rss_unlimited_categories

This plugin contains examples of all the concepts covered in this chapter. It creates and
uses its own database table, which enables you to attach an unlimited number of cate-
gories to an article above and beyond the standard two categories that Textpattern
provides.

On the admin side, the plugin uses callbacks to enable you to set and edit article cate-
gories. It also registers its own admin-side tab that enables you to set preferences for the
plugin.

On the public side, the plugin also uses a callback to support the /section/category and
/section/category/title URL patterns. There is a collection of public-side tags of the
self-closing, enclosing, and conditional variety.

www.wilshireone.com/textpattern-plugins/rss-unlimited-categories

WRITING PLUGINS

309

14

8326CH14.qxd 4/11/07 12:34 PM Page 309

rss_thumbpop

This plugin generates several different image gallery formats. The typical layout includes a
listing of image thumbnails that display a full-size image when clicked. The gallery includes
configurations that enable it to display the full images in a pop-up window, with or with-
out a caption, or on the same page using JavaScript.

www.wilshireone.com/textpattern-plugins/rss-thumbpop

rss_auto_excerpt

This plugin automatically generates an article excerpt based on the number of characters,
words, sentences, or paragraphs that you specify.

www.wilshireone.com/textpattern-plugins/rss_auto_excerpt

rss_admin_db_manager

This admin-side plugin adds three tabs to the admin interface that enable you to manage
database backups, maintain your database tables, and execute SQL queries.

www.wilshireone.com/textpattern-plugins/rss_admin_db_manager

glx_admin_image

This admin-side plugin adds a wealth of helpful features to the Content ä Images tab,
including the ability to rotate images and automatically create thumbnails.

http://grauhirn.org/txp/12/glx_admin_image_resize

ajw_if_comment_owner

This plugin enables you to generate different output if the current comment was posted
by the owner of the site. It is commonly used by site owners to style their comments dif-
ferently from others.

http://compooter.org/2005/03/textpattern-plugin-ajw-if-comment-owner

zem_contact_reborn

This plugin is one of the most widely used and can help you create anything from a simple
contact form to a complex registration form.

http://thebombsite.com/txpplugins/408

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

310

8326CH14.qxd 4/11/07 12:34 PM Page 310

Summary
This chapter covered everything you need to know to start writing your own Textpattern
plugins. While the Textpattern core offers a great set of basic features, the plugin frame-
work enables you to extend its functionality for whatever you need. If you’re interested in
writing your own plugins, make sure that you start from the basics. Getting an appropriate
workspace set up and learning how best to use the helper functions and global variables
that Textpattern offers will save you time in the long run. And don’t forget to check the
Textpattern Resources site at www.textpattern.org to find other plugins that you can
learn from.

Now that all the building blocks that make up the Textpattern system have been discussed,
the next three chapters explore the creation of professional websites that were built with
Textpattern. All the sites are completely different and demonstrate how flexible Text-
pattern really is.

WRITING PLUGINS

311

14

8326CH14.qxd 4/11/07 12:34 PM Page 311

PART FIVE TEXTPATTERN SITE
EXAMPLES

8326CH15.qxd 4/17/07 5:34 PM Page 312

15 MULTIAUTHOR WEBLOG

8326CH15.qxd 4/17/07 5:34 PM Page 313

This chapter looks at what goes into building a multiauthor weblog of moderate complex-
ity. The case study in this chapter involves a site that is already functioning in the wild and
is live on the Internet. You’ll look at the Godbit Project website, which has been online in
its current state for a little more than a year now (see Figure 15-1).

Figure 15-1. A resource for churches to better use the Web: Godbit Project

You looked briefly at the hierarchical template structure of this site in Chapter 5, but for
the sake of easy reference, the diagram makes an appearance again in this chapter (see
Figure 15-2).

The purpose of Godbit is to help churches catch up with the rest of the world in adher-
ence to the recommendations given by the World Wide Web Consortium (W3C).1 This set
of regulations has become known as Web Standards and is advocated by the Web
Standards Project.2 Godbit exists to do away with church websites that use nested tables
and font tags, which are typically adorned with a variety of tacky clip art. Sites are featured
that are both visually appealing and also well-coded (because the two need not be mutu-
ally exclusive).

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

314

1. www.w3.org
2. www.webstandards.org

8326CH15.qxd 4/17/07 5:34 PM Page 314

Figure 15-2. Textpattern setup: Godbit.com

As far as multiple authors go, those involved with the Godbit Project all share Managing
Editor privileges (with a single Publisher-level user) and do a round-table vote on bringing
on new contributors. This ensures that everyone is treated with mutual respect. If you are
running a site and need varying levels of user permissions, be sure to adjust them accord-
ingly. You might need to do this if you have several users submitting articles and others are
working as editors, while also accommodating access to the site's presentational aspects
for web designers. User permissions are covered further in Chapter 3.

Pages
This chapter first covers the Pages templates and then discusses the code snippets for
Forms. It should be pretty clear from the diagram which sections use which page tem-
plates, so that topic is not talked about a great deal. One thing to note is that the only sec-
tions that are syndicated are article and featured because the rest do not change often
enough to warrant Atom or Rich Site Summary (RSS) syndication.

static

First off, let’s start with one of the more simple aspects of building a Textpattern site: set-
ting up a template for static sections. The static page template for Godbit looks like this:

<txp:output_form form="doctype" />
<title><txp:sitename /> | <txp:section title="1" /></title>
</head>
<body id="godbit_com">
<div id="container">
<txp:output_form form="sidebar_left" />
<div id="content">
<txp:article limit="1" form="single" />

MULTIAUTHOR WEBLOG

315

15

8326CH15.qxd 4/17/07 5:34 PM Page 315

</div>
<txp:output_form form="sidebar_right" />
<div class="clear"> </div>

</div>
</body>
</html>

The first form that is output is named doctype and contains all the code required for each
and every page in the site. That form also includes the beginning tag for head, which con-
cludes after the title, to allow for the title of the page to change dynamically depending
on which section/article you are viewing. The <body> tag has an id attribute with the value
godbit_com, enabling users to override the stylesheet on a per-site basis. This is not essen-
tial for the site to function, but it is a nice courtesy to provide for your visitors, so they
don’t have to use body {...} in their Cascading Style Sheets (CSS), which affects all sites.

The two other forms pulled into the template are sidebar_left and sidebar_right. Note
that the Form that is being used on the <txp:article /> tag is single. This is an easy way
to build static pages with URLs structured like this: www.example.com/section.

default

The default page template differs only slightly from the static template, in that it has a
little bit of conditional logic to allow for changes based on whether the user is on the main
index page or an individual article. By default, the default section uses the default page
template (hopefully that wasn’t an abuse of the word default). The code for the default
page template looks like this:

<txp:output_form form="doctype" />
<title>
<txp:if_article_list>
<txp:sitename />
<txp:else />
<txp:page_title separator=" | " />

</txp:if_article_list>
</title>
</head>
<body id="godbit_com">
<div id="container">
<txp:output_form form="sidebar_left" />
<div id="content">
<txp:if_article_list>
<txp:article limit="5" form="excerpt" />
<txp:else />
<txp:article form="default" />

</txp:if_article_list>
</div>
<txp:output_form form="sidebar_right" />
<div class="clear"> </div>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

316

8326CH15.qxd 4/17/07 5:34 PM Page 316

</div>
</body>
</html>

Notice that the following tags are used: <txp:if_article_list>...<txp:else />...
</txp:if_article_list>. They are used once in the <title> and again in the content
div. If the page that the user is looking at is an article list, a la the main page, only the
name of the site is displayed. Otherwise, if the user is on an individual article’s page, the
page title is displayed with the designated separator (it looks like “Godbit Project|Name of
Article”). Likewise, on the main page, a listing of five articles is output with the form
of excerpt, showing an abbreviated bit of text from each one. Otherwise, the full article is
shown via the default form.

featured

This page template is probably the most complicated because it serves up individual arti-
cles for the featured section and doubles as a gallery with pagination. Here is the code that
comprises this template:

<txp:output_form form="doctype" />
<title>
<txp:if_article_list>
<txp:sitename /> | <txp:section title="1" />
<txp:else />
<txp:page_title separator=" | " />

</txp:if_article_list>
</title>
</head>
<body id="godbit_com">
<div id="container">
<txp:output_form form="sidebar_left" />
<div id="content">
<txp:if_article_list>
<h1>Featured Sites</h1>
<txp:article pgonly="1" offset="2" limit ="8" />
<p class="pagination">
<txp:older showalways="1">« Older</txp:older> /
<txp:newer showalways="1">Newer »</txp:newer>

</p>
<p id="featured_gallery">
<txp:article form="featured_gallery" offset="2" limit="8" />

</p>
<p class="pagination">
<txp:older showalways="1">« Older</txp:older> /
<txp:newer showalways="1">Newer »</txp:newer>

</p>
</txp:if_article_list>
<txp:if_individual_article>
<txp:article limit="1" form="featured_article" />

MULTIAUTHOR WEBLOG

317

15

8326CH15.qxd 4/17/07 5:34 PM Page 317

</txp:if_individual_article>
</div>
<txp:output_form form="sidebar_right" />
<div class="clear"> </div>

</div>
</body>
</html>

Much of the conditional logic should already be familiar to you because of the previous
examples, so you’ll concentrate on what makes this template unique. Take note of the
<txp:article pgonly="1" /> tag, which causes a counter to be incremented, but does
not actually output any content. This is necessary for the <txp:older>...</txp:older>
and <txp:newer>...</txp:newer> tags to function (if they appear before your main arti-
cle tag), along with the article tag that has the attribute and value limit="8". This builds a
gallery of eight featured site images per page, which can be navigated through via the
Older/Newer links. If the user is on an individual article’s page, only one is displayed and is
formatted with the form named featured_article.

archive

This page template is not as complicated as it seems. Despite there being quite a bit of
code, it is actually easier to understand than the featured template. Take a look at it and
then you’ll walk through the parts:

<txp:output_form form="doctype" />
<title><txp:sitename /> | archive</title>
</head>
<body id="godbit_com" class="archive_page">
<div id="container">
<txp:output_form form="sidebar_left" />
<div id="content">
<h1>Archive</h1>
<txp:if_section name="archive_dates">
<p class="info">
Browse by: Dates |
Topics |
Links
</p>

<txp:rss_suparchive section="article,featured" dateformat="F Y" å

showsubdate="1" />
</txp:if_section>
<txp:if_section name="archive_topics">
<p class="info">
Browse by: Dates |
Topics |
Links

</p>
<h2>Book Reviews</h2>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

318

8326CH15.qxd 4/17/07 5:34 PM Page 318

<txp:article_custom limit="999" form="headlines" å

section="article" category="books" sort="title asc" />

<h2>Featured Sites</h2>

<txp:article_custom limit="999" form="headlines" å

section="featured" sort="title asc" />

<h2>General</h2>

<txp:article_custom limit="999" form="headlines" å

section="article" category="general" sort="title asc" />

<h2>Interviews</h2>

<txp:article_custom limit="999" form="headlines" å

section="article" category="interviews" sort="title asc" />

<h2>Tutorials</h2>

<txp:article_custom limit="999" form="headlines" å

section="article" category="tutorials" sort="title asc" />

</txp:if_section>
<txp:if_section name="archive_links">
<p class="info">
Browse by: Dates |
Topics |
Links

</p>
<ul id="archive_links">
<txp:linklist form="Links" sort="title asc" />

</txp:if_section>

</div>
<txp:output_form form="sidebar_right" />
<div class="clear"> </div>

</div>
</body>
</html>

As seen in Figure 15-1, this page template powers three sections: archive_dates,
archive_topics, and archive_links. The archive_dates section is quite simple because
I am using a plugin created by Robert Sable: rss_superarchive3 (rss_ refers to his initials,
not to RSS as in syndication). This tag contains two attribute/value pairs: dateformat="F"
and showsubdate="1". The date format "F" outputs the full month name, and "Y" pro-

MULTIAUTHOR WEBLOG

319

15

3. www.wilshireone.com/textpattern-plugins/rss-suparchive

8326CH15.qxd 4/17/07 5:34 PM Page 319

duces a four-digit year. The other attribute controls whether the day of the month is dis-
played alongside the article title, or whether only the titles themselves are used.

If the user is viewing the archive_topics section, a simple list is output using the
<txp:article_custom /> tag. The limit is set to 999 simply because the default is 10. At
the point where any of these categories actually had that many entries, the limit could be
set higher to accommodate the growth. They appear in ascending order by title, which is
just a fancy way of saying that they are alphabetized for easier scanning. This just offers the
user a different way to see the same data: topically versus chronologically.

For the archive_links section, it is basically just a gigantic listing of all links that have
appeared in the left sidebar of the site. The links are output alphabetically and are floated
left via CSS, using the hook of id="archive_links". This simulates a two-column layout
for the listing.

search

This page template contains a <txp:article /> tag with the pgonly attribute, as did the
featured template. This increments a counter of returned search results, so that it can be
displayed visibly with <txp:search_result_count /> (assuming that it comes before your
main article tag). You’ll notice the same sort of pagination as was used in the featured
page template. The newer and older tags do not pertain to chronology as with the fea-
tured sites gallery, but simply navigate through the most search results to the least.

<txp:output_form form="doctype" />
<title><txp:sitename /> | <txp:section title="1" /></title>
</head>
<body id="godbit_com">
<div id="container">
<txp:output_form form="sidebar_left" />
<div id="content">
<txp:article pgonly="1" />
<h1><txp:search_result_count />:</h1>
<p class="pagination">
<txp:newer showalways="1">« Prev</txp:newer> /
<txp:older showalways="1">Next »</txp:older>

</p>
<txp:article form="search_results" limit="10" />
<hr />
<p class="pagination">
<txp:newer showalways="1">« Prev</txp:newer> /
<txp:older showalways="1">Next »</txp:older>

</p>
</div>
<txp:output_form form="sidebar_right" />
<div class="clear"> </div>

</div>
</body>
</html>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

320

8326CH15.qxd 4/17/07 5:34 PM Page 320

error_404

This page is very straightforward. It has a unique template because it is not necessary to
show the entirety of the site content to convey to the user that they have reached a desti-
nation that does not exist. While this page still retains some distinctive branding, it is far
simpler than the rest of the site, as seen in Figure 15-3.

Figure 15-3. Godbit error page

The code for this page is as follows and is purely XHTML without any Textpattern tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" å

lang="en-us">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<meta name="mssmarttagspreventparsing" content="true" />
<meta name="robots" content="none" />
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon" />
<link rel="stylesheet" href='/css/godbit_error.css' type="t
media="screen, projection" />

<title>Godbit Project | error</title>
</head>
<body id="godbit_com">
<h1>404 Error</h1>

MULTIAUTHOR WEBLOG

321

15

8326CH15.qxd 4/17/07 5:34 PM Page 321

<p>
The file you are attempting to access cannot be found. It has either
been moved, renamed or deleted. You might want to try the
Homepage or Archive to
find what you are looking for. If you are still having trouble, then
feel free to Contact Us.

</p>
</body>
</html>

Forms
Now that we have looked at all the page templates involved in this site, let’s turn our
attention to the TXP forms used to house all the code snippets. Note that some forms call
other forms, and this is perfectly allowable as far as Textpattern is concerned. Also, some
forms control the output of articles and other dynamic content, while several forms sim-
ply contain large chunks of code.

comments (type: comment)

This form controls the output of comments. Notice that I am using a title attribute on a
span to display more information in a tooltip about the date when each comment was
posted. This is nice if someone really cares, but does not clutter up the page for those
who just want to read the comments sequentially. The <txp:comment_permlink>...
</txp:comment_permlink> (or <txp:comment_permlink />) is essential to have on a
page because it allows for an anchor to jump directly to the comment when it has been
posted. The <txp:ajw_comment_num /> is a plugin that outputs the numerical value of
each comment in the list, written by Andrew Waer.4 This is helpful if you want the com-
ments to be numbered, but are not necessarily using a typical ordered list. The self-closing
<txp:comment_name /> and <txp:comment_message /> tags output the commenter’s
name and message, respectively.

<p>
<span class="comment_num" title="Posted: <txp:comment_time />">
<txp:comment_permlink><txp:ajw_comment_num /> å

</txp:comment_permlink>

<txp:comment_name />

</p>
<txp:comment_message />
<txp:comment_form />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

322

4. http://compooter.org/article/109/textpattern-plugin-ajw-comment-num

8326CH15.qxd 4/17/07 5:34 PM Page 322

comments_display (type: article)

Like comments, this form is built in and cannot be removed. It is used to format the output
of comments. Here, it is outputting all the accumulated comments via <txp:comments />.
Note the use of the conditional tags to present a comments_preview form, if indeed a
comment is being previewed. Likewise, if comments are allowed, the comment form is
produced.

<h2 id="discuss">Discuss This Topic</h2>
<txp:comments />
<txp:if_comments_preview>
<txp:comments_preview form="comments_preview" />

</txp:if_comments_preview>
<txp:if_comments_allowed>
<txp:comments_form />
<txp:else />
<p id="txpCommentInputForm">Commenting has expired.</p>

</txp:if_comments_allowed>

comment_form (type: comment)

This form controls the formatting for the XHTML <form>...</form> itself. So this is the
one and only instance in which the word form is actually being used the way it should be—
to describe the XHTML tag. The code is pretty understandable. There is a label for each
input, appropriately named for each corresponding TXP tag. The reason for this is
for accessibility—to directly associate the text within the <label>...</label> tags with
their respective input/fields.

<txp:comments_error wraptag="ul" break="li" />
<p>
<label for="name">Name</label>
<txp:comment_name_input />

</p>
<p>
<label for="email">Email</label> - optional
<txp:comment_email_input />

</p>
<p>
<label for="web">Website</label> - optional
<txp:comment_web_input /></p>

<p>
<label for="message">Message</label> - å

 å

help
<txp:comment_message_input />

</p>
<p id="publish">

MULTIAUTHOR WEBLOG

323

15

8326CH15.qxd 4/17/07 5:34 PM Page 323

<txp:comment_preview />
<txp:comment_submit />

</p>

Note that I have an ID added to the paragraph containing the Preview and Submit buttons,
though it is not entirely necessary. This is to make it easier, via an interpage anchor link, for
people to jump from their preview directly to submitting their comment. This helps for
accessibility as well, and just better interaction in general if someone writes a long com-
ment. (I also renamed the Submit button to Publish because I think it sounds better.) You
can do this by downloading and editing your respective language file,5 uploading it to
/textpattern/lang/, and choosing Install from File via Admin ä Preferences ä Language.

comments_preview (type: comment)

This is essentially the same look and feel as a regular comment, except that it’s a <div>
styled to look like the that contains all the other comments. It also has a nice mes-
sage that informs the end user that this is in fact just a preview, not the final product.
There is a link to #publish, so that users are directed to where they can actually press the
Publish (Submit) button to post the comment once they are satisfied with it.

<div id="cpreview">
<p>
<span class="comment_num" title="Posted: <txp:comment_time />">
<txp:comment_permlink><txp:ajw_comment_num /> å

</txp:comment_permlink>

<txp:comment_name />

</p>
<div class="clear"> </div>
<p class="announcement">
Note: The following is a Preview of what your å

comment will look like.
Please do not forget to scroll back down and actually hit the
Publish button. Thanks!

</p>
<txp:comment_message />

</div>

default (type: article)

This is the form used for anything posted to the article section. Notice the conditional
tags, which incorporate a variety of JavaScript files if the article has the category of "Code"
chosen from the second drop-down menu in the Write interface. The nice thing about

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

324

5. http://rpc.textpattern.com/lang

8326CH15.qxd 4/17/07 5:34 PM Page 324

JavaScript files, as opposed to CSS, is that they can be called from anywhere in a docu-
ment, not just the <head>. If the article contains code examples, this brings in the files that
run and add appropriate code highlighting. This JavaScript is provided free of charge by
Dan Webb,6 based on the initial work done by Dean Edwards.7

Following that, there is another set of conditional comments, which outputs the number
of comments per article. One minor irritation for me is when there is only one comment,
websites still read 1 comments. It should be singular, so I have written a short PHP snippet
that uses raw PHP to determine the number of comments. If the number is not equal to 1,
(0 or 2+), it reads "X comments" because of echo 's'. This is a roundabout way of fixing a
small problem, but hey—I am picky.

<txp:if_article_category name="Code" number="2">
<script type="text/javascript" src="/js/codehighlighter.js"></script>
<script type="text/javascript" src="/js/css.js"></script>
<script type="text/javascript" src="/js/html.js"></script>
<script type="text/javascript" src="/js/javascript.js"></script>
<script type="text/javascript" src="/js/ruby.js"></script>

</txp:if_article_category>
<h1><txp:title /></h1>
<p class="info">

<txp:comments_count />
comment<txp:php>
if ($GLOBALS['thisarticle']['comments_count'] != 1)
{
echo 's';

}
</txp:php>

 | Posted:
<txp:posted /> in <txp:category1 />, by <txp:author />

</p>
<txp:body />

doctype (type: misc)

When setting up Textpattern sites, one of the things I almost always do is make a TXP form
named doctype that is of the type misc. In this, I place all the code that I typically need to
appear on each and every page of the site. For Godbit, the doctype TXP form looks like
this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-us" å

lang="en-us">

MULTIAUTHOR WEBLOG

325

15

6. http://projects.danwebb.net/wiki/CodeHighlighter
7. http://dean.edwards.name/star-light

8326CH15.qxd 4/17/07 5:34 PM Page 325

<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<meta http-equiv="imagetoolbar" content="false" />
<meta name="author" content="Godbit Contributors" />
<meta name="copyright" content="Copyright 2005-<txp:php> å

echo date("Y"); </txp:php> Respective Authors" />
<meta name="description" content="Christian CSS Showcase + Web å

Development Resource" />
<meta name="keywords" content="christian, css, design, development, å

interface, javascript, standards, user, web, xhtml" />
<meta name="mssmarttagspreventparsing" content="true" />
<meta name="robots" content="all" />
<link rel="search" type="application/opensearchdescription+xml" å

href="http://godbit.com/opensearch_desc.xml" å

title="Godbit Project" />
<link rel="alternate" href="/rss/" type="application/rss+xml" å

title="RSS" />
<link rel="shortcut icon" href="/favicon.ico" type="image/x-icon" />
<link rel="stylesheet" href='/css/godbit_main.css' type="text/css" å

media="screen, projection" />
<!--[if IE]>
<link rel="stylesheet" href='/css/godbit_ie.css' type="text/css" å

media="screen, projection" />
<![endif]-->
<link rel="stylesheet" href='/css/print.css' type="text/css" å

media="print" />
<script src=http://www.google-analytics.com/urchin.js å

type="text/javascript"></script>
<script type="text/javascript">
_uacct = "UA-167104-1";
urchinTracker();

</script>

I do not cover all of this in great depth because most of it is fairly standard XHTML, but I
emphasize a few things that make this type of code snippet helpful. As an astute reader
who is familiar with XHTML, you are no doubt wondering, “Why is there an opening
<head> tag, but not a closing one?” The answer is that the doctype TXP form is merely the
first portion of the beginning of the document—the portion that is repetitive across mul-
tiple pages. There is one key ingredient in <head>...</head> that needs to be dynamic
and change with every page. This is, of course, the <title>, included in the Pages tem-
plates themselves.

PHP date()
You might also have noticed this bit of code among the metainformation for the site’s
copyright: <txp:php>echo date("Y");</txp:php>. You might recall from Chapter 3 that
the regular PHP tags such as <?php ... ?> are not supposed to be used. Instead, the TXP
syntax allows for use of <txp:php>...</txp:php> instead. These tags do exactly the same
thing, indicating that raw PHP code is contained therein.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

326

8326CH15.qxd 4/17/07 5:34 PM Page 326

The code in this template simply produces the current year, according to the server on
which Textpattern is installed. When it is passed to the browser, it reads Copyright 2005-
XXXX Respective Authors” (XXXX = current year). That way, the copyright is always kept up to
date, no matter how long since the site went live. This bit of code is invisible to the end
user, but is read by automated site crawlers such as Google. This same technique is also
used visibly elsewhere on the Godbit site.

External CSS
I link directly to CSS files instead of storing and calling them from within the Textpattern
database. As mentioned in Chapter 5, the reason why is twofold:

It is far easier to write CSS using a bona fide text-editing program with code high-
lighting and proper indentation.

Using static files reduces strain on the server during periods of heavy traffic (that is,
if you are not using site caching—which Godbit does not because of needing the
forum feed pulled in un-cached to stay up-to-date). If you are using site caching,
you can serve CSS via Textpattern just fine. Since a few of my articles, as well as
those from other Godbit authors, have landed on the front page of Digg.com, it is
imperative to do everything possible to squeeze the most performance out of the
hosting environment.

OpenSearch
The link tag that points to opensearch_desc.xml is a way for you to add browser search
functionality to your website for browsers such as Firefox 2 or Internet Explorer 7. If you
are familiar with these browsers, you have used the search box in the upper-right corner
of the window (it looks something like Figure 15-4 for Firefox). By placing a file by this
name at the root of your domain, when visitors hit your site with a browser that supports
this newer technology, the search box changes color, which indicates that a search engine
is detected. Users can then click the down arrow and add your site’s search engine to their
browser.

Figure 15-4. Search box in Firefox 2

MULTIAUTHOR WEBLOG

327

15

8326CH15.qxd 4/17/07 5:34 PM Page 327

A screenshot of this being done in Internet Explorer 7 can be seen in Figure 15-5.

Figure 15-5. Adding a search engine in Internet Explorer 7

As far as the actual code that belongs in the opensearch_desc.xml file, it should look like
the following example. You should, of course, swap out godbit.com with the actual URL
for your particular website. Note that this is contingent on having a TXP section named
search.

<OpenSearchDescription>
<ShortName>Godbit Project</ShortName>
<Description>Godbit Project - Article Search</Description>
<Image height="16" width="16" type="image/x-icon"> å

http://godbit.com/favicon.ico</Image>
<Url type="text/html" method
template="http://godbit.com/search?q={searchTerms}" />

</OpenSearchDescription>

OpenSearch was made possible by an initiative from A9.com, which was started by
Amazon.com. More information on the actual XML specification can be found at its official
website: www.opensearch.org.

Google Analytics
The last little bit of code that might look unfamiliar is simply the JavaScript necessary to
track visitors with Google’s statistics service called Analytics.8 It was formerly provided by a
company named Urchin Software Corporation, which was acquired by Google in April
2005. Now Google offers this service free to anyone who wants to sign up. I use it on
Godbit because it enables multiple authors to log in and check site stats, as well as offload-
ing the server overhead for stat recording and number-crunching to Google instead.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

328

8. www.google.com/analytics

8326CH15.qxd 4/17/07 5:34 PM Page 328

excerpt (type: article)

This form is responsible for the abbreviated bit of text that gives a glimpse into each arti-
cle. Notice that I am using the <txp:permlink /> as a self-closing tag instead of
<txp:permlink>...</txp:permlink>. This is because using the opening and closing tags
creates the title attribute with the message "Permanent link to this article", which is sort of
redundant, considering that the name of the article is typically the text within the link. Not
to mention that accessibility-wise, those using assistive technologies will hear "Permanent
link to this article" needlessly repeated. (This snafu will most likely be removed in future
releases beyond 4.0.4, so this bit of advice may indeed be a moot point by the time you
read these words.)

The truncated text itself is handled by the kgr_safe_excerpt plugin,9 which enables you
to specify the number of words that will be displayed before a Read more type of link
appears. The nice thing about this tag is that it does not cut off in the middle of a word
and it also strips out all tags, so you do not accidentally have a starting tag with no ending.

<h1><a href="<txp:permlink />"><txp:title /></h1>
<p class="info">
<a href="<txp:permlink />#discuss">
<txp:if_comments>
<txp:comments_count />
<txp:else />
0
</txp:if_comments> comment<txp:php>
if ($GLOBALS['thisarticle']['comments_count'] != 1)
{
echo 's';

}
</txp:php>

 | Posted:
<txp:posted /> in <txp:category1 />, by <txp:author />

</p>
<p class="excerpt">
<txp:kgr_safe_excerpt words="50" linktext="• Read More" />

</p>

featured_article (type: article)

This is much like the default TXP form, with the exception that there is no conditional logic
to include the code-highlighting JavaScript, and it also has the additional <txp:article_
image />, which is specified in the Write area of the Textpattern interface.

MULTIAUTHOR WEBLOG

329

15

9. www.textpattern.org/plugins/334/kgr_safe_excerpt

8326CH15.qxd 4/17/07 5:34 PM Page 329

<h1><txp:title /></h1>
<p class="info">
<a href="<txp:permlink />#discuss">
<txp:if_comments>
<txp:comments_count />
<txp:else />
0

</txp:if_comments> comment<txp:php>
if ($GLOBALS['thisarticle']['comments_count'] != 1)
{
echo 's';

}
</txp:php>

 | Posted:
<txp:posted /> in Featured, by <txp:author />

</p>
<p class="featured"><txp:article_image /></p>
<txp:body />

featured_gallery (type: article)

This is used to output the image for the featured sites as they are added to the gallery.
They are floated left in the site design, creating a simulated two-column layout.

<a href="<txp:permlink />" title="<txp:title />"> å

<txp:article_image />

featured_preview (type: article)

This is identical to the previous TXP form, except it has a paragraph tag around it for inclu-
sion in the sidebar_right template. When looking at the site design (refer to Figure 15-1),
you can see the two images on the right side, using this form’s code snippet.

<p><a href="<txp:permlink />" title="<txp:title />"> å

<txp:article_image /></p>

headlines (type: article)

This is used to pull in lists of articles in both the sidebar_left and sidebar_right TXP
forms.

<a href="<txp:permlink />"><txp:title />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

330

8326CH15.qxd 4/17/07 5:34 PM Page 330

search_results (type: article)

This is the formatting used for search results in conjunction with the search page tem-
plate. The limit="3" for the <txp:search_result_excerpt /> refers to how many
instances of the search term will be shown before the excerpt ends. It can be set to
accommodate whatever number you like, but a few context clues should be enough to
help people gauge whether the article is relevant.

<hr />
<p><a href="<txp:permlink />"><txp:title /></p>
<p class="search_results"><txp:search_result_excerpt limit="3" /></p>

single (type: article)

This form is used only with the static page template. It just outputs the title of the article
and the article text.

<h1><txp:title /></h1>
<txp:body />

Links (type: link)

This is used to output a list of links in the sidebar_left form, as well as in the
archive_links page template.

<txp:linkdesctitle />

sidebar_left (type: misc)

This template contains the site branding, navigation, and links to the latest posts on the
discussion forum. Notice the somewhat quizzical <txp:if_section name="">, followed by
an XHTML comment, and <txp:else />. Essentially, it fills the logo <div> with if
the name of the current section is blank (or "default"), which is the TXP way of identifying
the default section. This keeps the dimensions of the <div> because something is inside it,
but makes it just hold its place. If the end user is visiting any other section of the site, a link
back to the main page appears since it comes after <txp:else />.

The code contained within <txp:php>...</txp:php> simply asks the database that drives
the site’s discussion forum to pull the four latest topic titles and link to the most recently
updated posting in each one. The forum runs on PunBB,10 but that is beyond the scope of
this book. (However, I figured I should leave that bit of code in, just in case people wonder
where it came from on the XHTML side of things.) The article titles for Book Reviews are
sorted by rand(), which randomizes the listing. This way, older book reviews are cycled
through every time the page loads. The same is true of the Tutorials and Interviews in the
sidebar_right form, which helps circulate articles that might not otherwise get noticed.

MULTIAUTHOR WEBLOG

331

15

10. www.punbb.org

8326CH15.qxd 4/17/07 5:34 PM Page 331

<div id="sidebar_left">
Skip to Content
<div id="logo">
<txp:if_section name="">
<!-- -->
<txp:else />
Go Home

</txp:if_section>
</div>

<ul id="menu">
Discussion Forum
Purpose + Vision
About the Authors
Article Archive
Desktop Wallpaper
Help + Questions
Contact Us

<h2>Forum Buzz:</h2>
<ul class="links">
<txp:php>
$ch = curl init("http://godbit.com/forum/extern.php? å

action=active&show=4");
curl_exec($ch);
curl_close($ch);

</txp:php>

<h2>External Links: // View all</h2>
<ul class="links">
<txp:linklist form="links" limit="4" sort="date desc" />

<h2>Book Reviews:</h2>
<ul class="links">
<txp:article_custom limit="4" section="article" form="headlines" å

category="books" sortby="rand()" />

</div>

sidebar_right (type: misc)

This is the form for the other side of the page. Notice that there are syndication links pro-
vided for comments. It is not native to Textpattern and is being done with a plugin called
ajw_comments_feed.11 Aside from that caveat, the rest of the TXP tags should be old hat
by now.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

332

11. www.compooter.org/article/140/textpattern-plugin-ajw-comments-feed

8326CH15.qxd 4/17/07 5:34 PM Page 332

<div id="sidebar_right">
9rules Network
<form method="get" action="/search">
<p>
<input type="text" name="q" id="search_field" å

value="Search Articles…" alt="search" å

onfocus="this.value = '';" onblur="if(this.value == '') å

{this.value = 'Search Articles…'}" />
</p>
</form>
<p id="feed">
<acronym title="Rich Site Summary">RSS</acronym>: å

Main,
Comments,
Forum,
Links

</p>
<h2>Featured Sites: // View all</h2>
<txp:article_custom form="featured_preview" limit="2" å

section="featured" sortby="posted" sortdir="desc" pageby="8" />
<h2>Tutorials:</h2>
<ul class="links">
<txp:article_custom limit="4" section="article" form="headlines" å

category="tutorials" sortby="rand()" />

<h2>Interviews:</h2>
<ul class="links">
<txp:article_custom limit="4" section="article" form="headlines" å

category="interviews" sortby="rand()" />

<h2>Site Mechanics:</h2>
<p>
This site is maintained using the
<acronym title="Content Management System">CMS</acronym>
Textpattern, and adheres
to valid å

XHTML,
CSS
and <a href="http://www.contentquality.com/mynewtester/cynthia å

.exe?Url1=http://www.godbit.com/">508 accessibility
requirements. The forum uses å

PunBB. Articles å

 å

© 2005-<txp:php>echo date('y');</txp:php>
original authors.

</p>
</div>

MULTIAUTHOR WEBLOG

333

15

8326CH15.qxd 4/17/07 5:34 PM Page 333

zem_contact_form (type: misc)

This form makes use of the zem_contact_reborn12 and zem_contact_lang13 plugins, which
were originally written by Alex Shiels (known as Zem to the greater Textpattern commu-
nity). These plugins have since been built upon and extended by a variety of users.14

Basically, they enable you to build an email contact form in which the recipient’s email is
kept encrypted and hidden from public view. They also enable you to specify a form to be
displayed after the email is sent. I have appropriately named mine zem_contact_thanks.

It should be noted that Godbit also makes use of one last plugin, pap_contact_cleaner,15

which is designed to work with the zem_contact_reborn API to prevent comment form
spam. While perpetrators might not know your actual address, it does not stop them from
writing spam bots that go hunting for contact forms and bombard you with silly ads for
imitation Gucci clothing and accessories. To combat this problem, simply install the
pap_contact_cleaner plugin. It creates two hidden form fields, which you can name
something similar to phone and mail (to not conflict with email), and spam bots will be
savvy enough to fill them out with a number and address. The trick is this: if these hidden
fields are filled out, the plugin keeps the form from actually sending the message. Human
users can’t see them and cannot fill them out, so the only way it can happen is via auto-
mated spam. Ta da! Problem solved.

<txp:zem_contact to="godbit.com@gmail.com" å

thanks_form="zem_contact_thanks">
<p>
<txp:zem_contact_text label="Name" />

</p>
<p>
<txp:zem_contact_email />

</p>
<p>
<txp:zem_contact_text label="Website" />

</p>
<p>
<txp:zem_contact_textarea />

</p>
<p id="publish">
<input type="submit" class="button" value="Fire Away" å

name="zem_contact_submit" />
</p>

</txp:zem_contact>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

334

12. www.textpattern.org/plugins/701/zem_contact_reborn
13. www.textpattern.org/plugins/702/zem_contact_lang
14. http://forum.textpattern.com/viewtopic.php?id=13416
15. www.textpattern.org/plugins/703/pap_contact_cleaner

8326CH15.qxd 4/17/07 5:34 PM Page 334

zem_contact_thanks (type: misc)

This is displayed after someone sends an email via the Godbit contact form.

<p class="announcement">
Thank you for your interest in our website. Your letter is on its way
to the post office, and we should be recieving it within a few days.
Please allow some time for us to review it and get back to you. We
look forward to the conversation!

</p>

Summary
I hope that this chapter proved beneficial to you and showed some of the varieties of
things that can be done with Textpattern, from building an image gallery to randomizing
article content—making a blog into a site that is more community- and news-oriented. If
you have any questions or want to get involved in our discussions about Web Standards,
feel free to check out the Godbit forum. Once you have had a chance to digest the infor-
mation you just read, get ready to roll up your sleeves because in the next chapter you will
crank your skills up yet one more notch and learn how to use Textpattern to build sites for
e-commerce.

MULTIAUTHOR WEBLOG

335

15

8326CH15.qxd 4/17/07 5:34 PM Page 335

8326CH16.qxd 4/17/07 3:07 PM Page 336

16 CASE STUDY:
POPULARWEDDINGFAVORS.COM

8326CH16.qxd 4/17/07 3:07 PM Page 337

In the last chapter, you saw a multiauthor weblog that was built with Textpattern. While
that may be the most common use of Textpattern, a weblog is certainly not the only type
of site that will benefit from using it. This chapter explores the use of Textpattern to build
the PopularWeddingFavors.com ecommerce store, including a product catalog, shopping
cart, and payment system integration.

Why use Textpattern for ecommerce?
When I first set out to build an ecommerce site, I searched far and wide for an open-
source, PHP-based ecommerce package that I could use. I quickly found that most of the
available packages were either incomplete and bug-ridden, or monolithic and difficult to
understand. Instead of being faced with learning a complex new website platform from
scratch, I continued to search for an alternative.

The more I researched the subject, the more problems I found with the scripts that were
readily available on the Internet. I had already built several Textpattern sites and authored
many plugins, so I wondered how much easier it would be if I could build an ecommerce
site using Textpattern. I started to capture my basic requirements for an ecommerce site
framework and found that I could easily satisfy most of them with Textpattern. Here’s the
list that I started with, which included the features I was looking for:

Have the ability to use a Web Standards–based design

Have the ability to maintain a separation of content and presentation

Use a web-based content entry system for text and images

Use the same software to maintain static site pages and the product catalog

Easily employ standard Search Engine Optimization (SEO) tactics

Use clean URLs

Use keywords in URLs

Maintain a shopping cart on the site to be passed to a payment processor

Handle payments through PayPal

When I reviewed this list along with all my options, it was no contest in the end. With some
custom coding, Textpattern would enable me to satisfy all these requirements. Several
new Textpattern plugins and a custom shopping cart later, my first ecommerce site,
FavorableDesigns.com, was launched in November of 2005. The site, pictured in
Figure 16-1, was well-received, and much of the custom coding done for the site has since
been released to the Textpattern community.

After the site launched, I monitored search engine results for critical keywords and found
that the site was well-indexed by all major search engines. This was the icing on the cake
for me, and at that point I decided that Textpattern would be my ecommerce platform of
choice.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

338

8326CH16.qxd 4/17/07 3:07 PM Page 338

Figure 16-1. FavorableDesigns.com was my first integrated Textpattern ecommerce website.

Building PopularWeddingFavors.com
After the success of the original FavorableDesigns.com website, I was given the task of
creating a new ecommerce site called PopularWeddingFavors.com. The first thing I did was
contact Claudia Baggiani and Brian Buschmann to help me with the site design. Claudia
created all the illustrations and the overall site layout, and Brian helped with the informa-
tion architecture and some of the finer details. My job was to bring the site to life in
Textpattern. The result of our hard work is shown in Figure 16-2.

CASE STUDY: POPULARWEDDINGFAVORS.COM

339

16

8326CH16.qxd 4/17/07 3:07 PM Page 339

Figure 16-2. PopularWeddingFavors.com was illustrated and designed by Claudia Baggiani and Brian
Buschmann, and implemented in Textpattern by Rob Sable.

The rest of this chapter shows you how the PopularWeddingFavors.com website was built
using Textpattern.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

340

8326CH16.qxd 4/17/07 3:07 PM Page 340

Site structure

The PopularWeddingFavors.com site is a mix of dynamic pages used for product listings
and static pages used for general information. All of the content for the site is managed
through Textpattern. The entire site consists of the following pages:

Home is used for highlighted products, general information, and search results.

Catalog is used for listing products by category and to display individual products.

Policies is used to display static information regarding company policies.

About is used to display static information about the company.

Contact is used to display contact information including a contact form.

Sitemap has quick links to all sections and products on the site.

Cart is used to display products that users have added to their shopping cart.

Checkout is used to finalize and complete order details before making a payment.

Order is used for confirmation of order after purchase.

404 error is used to handle any page not found errors.

Because the focus of the site is on the products being sold, there aren’t very many pages
used. Many of the pages listed previously will end up being implemented using a single
Textpattern page template.

To manage products, I considered each product to be an article, so I could use the Textpattern
admin interface to enter product content and many of the standard Textpattern tags to
display the content. The biggest problem I saw was that I was limited to only two cate-
gories per product. Because I was in need of more, I developed the rss_unlimited_
categories plugin1 (refer to Chapter 14), which is used to display all the article and cate-
gory listings throughout the site.

Textpattern’s custom fields also play a large role in this site. Detailed information about
each product—including pricing, colors, size, personalized messages, and minimum order
quantities—are stored in the custom fields. To pack even more information into the cus-
tom fields, I used the sed_pcf plugin,2 which enabled me to fit multiple prices into a single
custom field for products that offer quantity-based discounts.

With a mix of core Textpattern functions, several Textpattern plugins, and some custom
coding, I was ready to begin building PopularWeddingFavors.com.

Page structure

The construction of the site started when I received a series of page layout templates from
Claudia and Brian. My first job was to turn the pages into valid HTML and CSS code. Once
the pages went through a series of cross-browser and cross-platform tests, they were
ready to be broken down into Textpattern pages and forms.

CASE STUDY: POPULARWEDDINGFAVORS.COM

341

16

1. www.wilshireone.com/textpattern-plugins/rss-unlimited-categories
2. http://txp-plugins.netcarving.com/plugins/packed-custom-fields

8326CH16.qxd 4/17/07 3:07 PM Page 341

Page header and footer
As with most websites, the PopularWeddingFavors.com site has a common header, footer,
and sidebar on all pages. For the sake of simplicity, all the common code is first broken out
into two distinct forms in Textpattern. I like to add a prefix to the forms that I create so
that I can easily distinguish my forms from the base Textpattern forms. So my two new
forms are called pwf_header and pwf_footer.

The pwf_header form contains everything from the <DOCTYPE> declaration down through
the <head> element, including all metadata for the site. The header also includes the
beginning of the <body> tag code along with the logo, top menu, and search bar. With
the source ordered so that the main content elements come before the sidebar menu, the
pwf_footer form can hold all the code for the sidebar and footer menus. Figure 16-3 illus-
trates the areas covered by the pwf_header and pwf_footer forms.

By moving all the common code into two forms, the definition of each individual page
becomes much simpler. Using the <txp:output_form/> tag, I can include those two forms
in a page template and generate the appropriate content in-between. My default page
template looks as follows:

<txp:output_form form="pwf_header" />
<txp:output_form form="pwf_home" />
<txp:output_form form="pwf_footer" />

The form included between the pwf_header and pwf_footer forms, called pwf_home,
includes all content in Figure 16-3 that doesn’t appear in the highlighted areas labeled
pwf_header and pwf_footer. While I could have included this directly in my page tem-
plate, I chose to move it to a separate form to keep my default page code clean when I
start to enhance the page in order to display search results.

Home page
After defining my page header and footer and moving my home page content into the
pwf_home form, I add additional code to the default page to enable it to handle and dis-
play search results:

<txp:output_form form="pwf_header" />
<txp:if_search>
<txp:article pgonly="1" />
<txp:rss_if_search_results>
<h2>Search Results</h2>
<txp:article />

<txp:else />
<txp:article_custom id="503" form="pwf_static" />

</txp:rss_if_search_results>
<txp:else/>
<txp:output_form form="pwf_home" />

</txp:if_search>
<txp:output_form form="pwf_footer" />

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

342

8326CH16.qxd 4/17/07 3:07 PM Page 342

Figure 16-3. The areas covered by the pwf_header and pwf_footer forms on
PopularWeddingFavors.com

I start by wrapping the pwf_home form in <txp:if_search/> tags, which enables me to dis-
play search results if a search was executed; otherwise, the pwf_home form is displayed.
Within the <txp:if_search/> tag, I then use the rss_if_search_results plugin3 to
enable me to display search results when they are found or display an alternate message
when no results are found. Figure 16-4 demonstrates the home page when a search is exe-
cuted and results are found.

CASE STUDY: POPULARWEDDINGFAVORS.COM

343

16

3. www.wilshireone.com/textpattern-plugins/rss-if-search-results

8326CH16.qxd 4/17/07 3:07 PM Page 343

Figure 16-4. The PopularWeddingFavors.com home page when search results are found

In the case of a search that returns no results, the code after the <txp:else/> tag is used,
and I display a specific article (# 503) that contains the no results found message. That
page can be seen in Figure 16-5.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

344

8326CH16.qxd 4/17/07 3:07 PM Page 344

Figure 16-5. The PopularWeddingFavors.com home page showing no search results found

The last part of the page template is a line of code that doesn’t generate any output:

<txp:article pgonly="1" />

The use of the <txp:article/> tag with the pgonly attribute set enables the
<txp:rss_if_search_results/> tag to function properly. Until the <txp:article/> tag is
called, I can’t tell whether there are any search results. But by that point, it’s too late for
me to alter the page display the way I want to. Although adding the pgonly attribute to the
call to the <txp:article/> tag hides it from display in the browser, Textpattern still parses
the tag and provides me with the information I need to know—whether a search has
returned results or not.

CASE STUDY: POPULARWEDDINGFAVORS.COM

345

16

8326CH16.qxd 4/17/07 3:07 PM Page 345

With fewer than 15 lines of code in my default page template, I can handle my normal
home page view, a search results view, and a no search results found view. The home page
serves as a launching point for the rest of the site.

Static pages
All the static content pages on the site use the same page template. These pages include
Policies, About Us, Contact Us, and Sitemap. The code for the static page is very simple:

<txp:output_form form="pwf_header" />
<txp:article form="pwf_static" limit="1" />
<txp:output_form form="pwf_footer" />

The page displays one article from the current section between the header and footer. The
layout of all four pages is the same, so the only part that differs is the article that is dis-
played.

Catalog page
The catalog page is used to display product listings by category and by price as well as indi-
vidual products:

<txp:output_form form="pwf_header" />

<txp:if_article_list>

<txp:if_category>
<h2><txp:category title="1" /></h2>

<txp:else />
<h2>All Wedding Favors</h2>

</txp:if_category>

<txp:if_category>
<txp:rss_unlimited_categories_article_list section="catalog"
usechildren="1" limit="999" form="pwf_prodlist"
sortby="(custom_6+0)" />

<txp:else />
<h3>Wedding Favors</h3>

<txp:rss_unlimited_categories_article_list section="catalog"
category="wedding-favors" usechildren="1" limit="999"
form="pwf_byprice" filter="1" filterfield="custom_6"
filtername="byprice" sortby="(custom_6+0)" />

<h3>Edible Wedding Favors</h3>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

346

8326CH16.qxd 4/17/07 3:07 PM Page 346

<txp:rss_unlimited_categories_article_list section="catalog"
category="edible-wedding-favors" usechildren="1" limit="999"
form="pwf_byprice" filter="1" filterfield="custom_6"
filtername="byprice" sortby="(custom_6+0)" />

</txp:if_category>

<txp:else />
<txp:article form="pwf_product" />

</txp:if_article_list>

<txp:output_form form="pwf_footer" />

The page again begins with the pwf_header form and ends with the pwf_footer form, as
all pages do. In between, I started by adding the <txp:if_article_list/> tag so that the
page can handle the display of article lists and individual articles. The code before
the <txp:else/> tag is used for product listings, and the code after is used for individual
products.

In the case of an article-listing page, there are two types of pages that can be built. The
<txp:if_category/> tag is used to alter the display when there is a global category set
within Textpattern. The existence of a global category is determined by the rss_
unlimited_categories plugin as it evaluates the page URL and set for later use while
building the page. When there is a global category set, the page shows a list of all products
in that category and displays the category title at the top of the page. This type of page is
shown in Figure 16-6.

The other type of product listing that this page can handle is listing by price. The URL is
parsed by the rss_unlimited_categories plugin to produce a filtered listing. Here’s the
code again from the catalog page template that produces the listing by price:

<txp:rss_unlimited_categories_article_list section="catalog"
category="wedding-favors" usechildren="1" limit="999"
form="pwf_byprice" filter="1" filterfield="custom_6"
filtername="byprice" sortby="(custom_6+0)" />

The last four plugin attributes being specified in this case are the ones doing all the work.
The filter parameter tells the plugin that I want to build a filtered list. The filterfield
parameter declares custom_6 as the field I’ll be filtering on. The filtername parameter
defines byprice as the name of the filter in the URL. Finally, by using a sortby value of
(custom_6+0), I force the list to be ordered numerically by price (which is stored in the
custom_6 custom field).

CASE STUDY: POPULARWEDDINGFAVORS.COM

347

16

8326CH16.qxd 4/17/07 3:07 PM Page 347

Figure 16-6. A product category listing page on PopularWeddingFavors.com

For example, a URL of www.popularweddingfavors.com/catalog/byprice/lt/2 would be
used to generate a product listing from the catalog that includes all products from the cat-
alog with a price less than $2. The third part of the URL (/lt) is used to tell the plugin that
it should use a less-than (<) comparison, and the fourth part of the URL (2) is the number
to filter on. This URL gives a product listing as shown in Figure 16-7.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

348

8326CH16.qxd 4/17/07 3:07 PM Page 348

Figure 16-7. Product listing by price page on PopularWeddingFavors.com

The products are shown in this type of listing with a different article form—highlighting
just the name and price of the product.

The remaining part of the page code simply displays the individual product page, as shown
in Figure 16-8.

CASE STUDY: POPULARWEDDINGFAVORS.COM

349

16

8326CH16.qxd 4/17/07 3:07 PM Page 349

Figure 16-8. Individual product page on PopularWeddingFavors.com

Each product page includes the product’s picture, detailed information on the product,
and an order form. The product shown in Figure 16-8 demonstrates the tiered pricing that
was implemented using the sed_pcf plugin. All the prices are stored in a single custom
field. For example, the pricing field for this product looks as follows:

prices(1=3.00;23=2.40;47=2.20;96=2.00)

The data from that field is evaluated as the page loads to display the proper pricing on the
page. When the item is added to the shopping cart, the correct price is calculated based
on the price levels and the quantity purchased.

Another product example is shown in Figure 16-9.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

350

8326CH16.qxd 4/17/07 3:07 PM Page 350

Figure 16-9. Individual product page on PopularWeddingFavors.com

This page shows a few additions from the previous page. First, the order form contains two
additional options. The options and their choices are again stored in custom fields. Each
product can have up to three customizable options.

A message noting that the product is nonreturnable is added to this page. This message is
displayed only for products that have been assigned to the nonreturnable category
through the use of the <txp:rss_if_article_unlimited_category/> tag, which is part of
the rss_if_article_unlimited_categories plugin.

CASE STUDY: POPULARWEDDINGFAVORS.COM

351

16

8326CH16.qxd 4/17/07 3:07 PM Page 351

Cart and checkout pages
The shopping cart and checkout pages on PopularWeddingFavors.com are driven by a
shopping cart system that I developed. The basic functionality was based on the wfCart
free PHP shopping cart class, which can be found at www.webforcecart.com. I adapted the
cart class to work within Textpattern and implemented some special rules that I needed to
enforce minimum order quantities, calculate quantity-based pricing, and display the con-
tents of the cart. A full shopping cart is shown in Figure 16-10.

Figure 16-10. The shopping cart with products on PopularWeddingFavors.com

Each product that is added to a shopper’s cart is displayed, along with information on
quantity ordered and price paid. The shopping cart screen is used to enable shoppers to
confirm their orders before completing their orders and choosing a form of payment.
Once all of the desired products are added to the cart, it’s time to proceed to the check-
out page, which is shown in Figure 16-11.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

352

8326CH16.qxd 4/17/07 3:07 PM Page 352

Figure 16-11. Checkout page on PopularWeddingFavors.com

The checkout page is essentially the same as the shopping cart page, with minor differ-
ences in the options available. This is the final confirmation step before beginning the pay-
ment process. Once the Complete Order button is clicked, shoppers are taken to the PayPal
site to pay for their purchases. After making payment, shoppers are returned to
PopularWeddingFavors.com and shown an order confirmation.

Order confirmation page
The information on the order confirmation page shown in Figure 16-12 is returned to
PopularWeddingFavors.com using the PayPal Instant Payment Notification (IPN) service.
The IPN service returns payment information, including the payee’s name and address,
from PayPal back to the PopularWeddingFavors.com site immediately after orders are
completed. This gives customers a nice order confirmation in case they have questions in
the future.

CASE STUDY: POPULARWEDDINGFAVORS.COM

353

16

8326CH16.qxd 4/17/07 3:07 PM Page 353

Figure 16-12. Order confirmation page on PopularWeddingFavors.com

Error page
The standard Textpattern error_default page has been customized to use the same header
and footer as the rest of the site. The error message is still displayed (see Figure 16-13),
along with some helpful information to help the user proceed in the right direction.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

354

8326CH16.qxd 4/17/07 3:07 PM Page 354

Figure 16-13. 404 error page on PopularWeddingFavors.com

Plugins used

The following plugins were used in the creation of PopularWeddingFavors.com (the cus-
tom shopping cart code and payment system integration have not been publicly released
as of the time of this writing):

rss_unlimited_categories is used to assign multiple categories to an article. All
the product and category listings on the site are generated by this plugin.

rss_if_search_results is used to display different messages on the search results
page based on the existence of search results.

rss_admin_db_manager is used to manage database backups and maintain the
Textpattern database.

rss_admin_show_adv_opts serves an essential purpose with the extensive use of
custom fields. It automatically expands the Advanced Options menu on the Write
tab.

rss_admin_quikpik is used to create a custom color scheme in the admin interface
and provides a series of time-saving drop-down menus.

CASE STUDY: POPULARWEDDINGFAVORS.COM

355

16

8326CH16.qxd 4/17/07 3:07 PM Page 355

rss_article_edit enables the addition of a link on public-side article forms that
takes an authorized user directly into article-editing mode for that article.

sed_pcf is used to manage product pricing in custom fields.

ied_hide_in_admin is used to hide fields on the Write tab that aren’t used.

zem_contact_reborn is used for the contact form.

pap_contact_cleaner prevents spam from the contact form.

Summary
This chapter demonstrated how Textpattern can be used to manage and run an ecom-
merce business. Although Textpattern is commonly used for weblogs, it can be used for
virtually any type of site. While many open-source shopping cart systems can be difficult to
work with and modify, Textpattern is an excellent platform for building a Web
Standards–compliant ecommerce store.

The PopularWeddingFavors.com site is a great example of the flexibility and extensibility
of Textpattern. By managing products as articles and using the rss_unlimited_categories
plugin, the site’s product catalog and static content are both easily controlled within
Textpattern. And the addition of a custom shopping cart and payment system integration
demonstrates the limitless opportunity to extend the core functionality of Textpattern. In
the end, the features that attracted me to Textpattern as a basic web publishing platform
are the same ones that make it a great platform for developing more complex websites
such as the PopularWeddingFavors.com ecommerce store.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

356

8326CH16.qxd 4/17/07 3:07 PM Page 356

8326CH16.qxd 4/17/07 3:07 PM Page 357

8326CH17.qxd 4/20/07 12:29 PM Page 358

17 CASE STUDY:
BOISECITYEATS.COM

8326CH17.qxd 4/20/07 12:29 PM Page 359

I live in a small city called Boise, located in the great state of Idaho (U.S.A.). I imagine that
my city is small to some, but big to others. At any rate, the city is not unlike most cities. As
such, there are numerous places and types of foods to eat in Boise. All too often, however,
because of the amount of choices available in Boise, I forget about places that have out-
standing food. This forgetting would typically happen when I was trying to decide where to
eat on Friday night after a long week of work. Not only that—if I did manage to remem-
ber a few of the great places to eat around Boise, I found it difficult to make a selection.
So I decided to create BoiseCityEats.com (scheduled for launch in 2007).

What is BoiseCityEats.com?
BoiseCityEats.com is a place to find and review local places to eat. More specifically,
BoiseCityEats.com enables you to search for a dining establishment by name, descrip-
tion, or keywords (tags). After searching for and finding a place to eat, BoiseCityEats.com
provides several features (driving directions, reviews, ratings, contact information, price,
and so on) to help the user select the perfect meal outside of the home, or maybe even
via delivery at home.

At this point I could continue describing what BoiseCityEats.com is, but a good look at
the visual comps is better than any additional words I might say. So before reading on, you
might find it helpful to review the comps in Figure 17-1.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

360

8326CH17.qxd 4/20/07 12:29 PM Page 360

Figure 17-1. Visual comps for the up-and-coming BoiseCityEats.com website

CASE STUDY: BOISECITYEATS.COM

361

17

8326CH17.qxd 4/20/07 12:29 PM Page 361

Why look at BoiseCityEats.com?

Normally, a website such as BoiseCityEats.com would require the assistance of a web
programmer to construct. That is, someone who is versed in creating a database and using
a sever-side programming language (ASP.NET, PHP, Python, ColdFusion, Perl, Java, Ruby) to
pull information from that database for display on a website. However, since I decided to
use Textpattern to build BoiseCityEats.com, the majority of the work typically done by a
web programmer to build a site has already been done. Using TXP, almost anyone who has
a basic understanding of HTML and can set up the default installation of TXP (refer to
Chapter 2) can create and deploy a site. From this point on, this chapter is about exactly
that. Together, we’ll create the base functionality that drives BoiseCityEats.com. The site
will be called CityEats.com, which is shown in Figure 17-2.

This chapter focuses on re-creating the prototype I originally developed when building
BoiseCityEats.com.

Before jumping straight into the prototype, I want to take a moment to explain why
CityEats.com (refer to Figure 17-2) looks so plain when compared with BoiseCityEats.
com (refer to Figure 17-1). For the most part, the CityEats.com site that will be built in this
chapter lacks a visual layer. If you are familiar with the term prototype in reference to a
web application, this probably makes complete sense. If you are not familiar with the pur-
pose of a prototype, you might not know that the lack of a visual layer is deliberate. In
general, a prototype is constructed to concentrate on the functionality (logic) of the appli-
cation, not the visual aspect associated with BoiseCityEats.com.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

362

8326CH17.qxd 4/20/07 12:29 PM Page 362

Figure 17-2. Screenshot for CityEats.com prototype

CASE STUDY: BOISECITYEATS.COM

363

17

8326CH17.qxd 4/20/07 12:29 PM Page 363

CityEats.com on textpatternsolutions.com

This book has an accompanying website, and the prototype site CityEats.com can be
viewed on the textpatternsolutions.com domain at the following subdomain: http://
cityeats.textpatternsolutions.com. Given that you are mostly concerned with the TXP
tool itself, a live version of the CityEats.com site is available so that you can log in to the
CityEats.com TXP installation and poke around all you want. To do so, simply tack on
/textpattern/ (http://cityeats.textpatternsolutions.com/textpattern/) to the URL
I just gave you and log in using the following use name and password:

Username: Guest

Password: h8d945

Certain functionality has been disabled to retain the same settings for all who log in to the
CityEats.com TXP installation, so no changes can be made to the CityEats.com site found
at http://cityeats.textpatternsolutions.com using these login credentials.

Preparing TXP for CityEats.com

To get under way, all you need to do is have a fresh install of TXP awaiting you. This means
you should have a workable version of the default installation of TXP live and functioning
on a domain you have admin rights to. It’s crucial that you start with a default installation
of TXP so that many of the instructions that follow make sense.

I have taken the liberty of assuming that you have read a good portion of this book, so I
have forgone any lengthy explanations about certain aspects of the TXP system that can be
found in other chapters in this book. I’ll diligently attempt to indicate when and where
additional information on a particular topic can be found outside of this chapter and in
which chapter it can be further studied.

Setting Site Preferences
If you have been reading this book in numerical order, starting with Chapter 1, you are
already familiar with the Admin tab. This is where you will start (and where I typically begin
when creating any TXP site).

Under the Admin tab, select the subtab Preferences. Under Site Prefences ä Publish, locate
the following field labels: Site name, Date format, Site slogan, Permanent link mode, Use
Textile, and Production Status. Starting with Site name, change the default values to the fol-
lowing (don’t change anything else in this panel unless told to do so):

Site name: cityeats.com

Date format: DD/MM/YYYY (defaults to the current date in the drop-down menu)

Site slogan: Find and review local eats!

Permanent link mode: /section/title

Use Textile: Leave text untouched

Production Status: Live

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

364

8326CH17.qxd 4/20/07 12:29 PM Page 364

Under the Comments section on the same page, locate the following field labels: Moderate
comments?, On by default?, Default invite, Disabled after, and Automatically append comments
to articles?. Change the default values as follows:

Moderate comments?: No

On by default?: Yes

Default invite: Review These Eats

Disabled after: never

Automatically append comments to articles?: No

Although most of these configuration changes are self-explanatory, the Automatically
append comments to articles? setting needs a brief explanation. This setting turns off the
default TXP rules that help automate the addition of comments to article pages by inject-
ing TXP tags into forms automatically. It is turned off here so the comments can be added
by manually adding TXP tags where you want them, not where the system would place
them.

This completes the changes to Site Preferences. Before moving on to Advanced Preferences,
make sure that you scroll to the bottom of the page and press Save.

Setting Advanced Preferences
The only settings in Advanced Preferences of interest are the Custom Fields settings, which
add custom inputs to an article (viewable on the Content ä Write tab) that have no
specific, predefined purpose. You can find detailed information about Custom Fields in
Chapter 12.

Locate the ten custom fields on the Advanced Preferences page and change the default
values to the values shown as follows (and yes, case matters):

Custom field 1 name: Address

Custom field 2 name: City

Custom field 3 name: State

Custom field 4 name: Zip

Custom field 5 name: Website

Custom field 6 name: Phone

Custom field 7 name: Price

Custom field 8 name: OnlineMenu

Custom field 9 name: TakeOut

Custom field 10 name: Delivery

This completes the changes to Advanced Preferences. Make sure that you scroll to the
bottom of the page and press Save before leaving this page.

CASE STUDY: BOISECITYEATS.COM

365

17

8326CH17.qxd 4/20/07 12:29 PM Page 365

Adding the right plugins
If you are a TXP veteran, you already know that its plugin architecture is one of its most
powerful features. If you are a TXP newbie, you’ll soon come to appreciate the functional-
ity enhancements that a plugin can deliver to TXP without having to change the base code.
This is especially important when it comes to upgrading TXP because using a plugin (versus
hacking the base code) can mean seamless upgrades to future releases of TXP. Modified
versions of TXP are not supported by the developers of TXP, so if you break something you
are on your own. More information about plugins can be found in Chapters 13 and 14. The
CityEats.com prototype site uses the plugins shown in Figure 17-3.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

366

Figure 17-3. Plugins page for CityEats.com

If you are familiar with installing plugins, you can navigate to the Plugins page (Admin ä
Plugins) and install the plugins shown in Figure 17-3 using the plugin text files that are
available when you download the source code for this book. If you have never installed a
TXP plugin, I suggest reading Chapters 13 and 14 before proceeding.

The plugin text files for CityEats.com can be found in the Chapter 17 folder and are
named according to the name of the plugin. Simply cut and paste the contents from each
plugin text file into the TXP Plugins interface and upload. Don’t activate the plugins until
you have uploaded them all.

My suggestion is to use the files that accompany this chapter because of the possible
changes to the plugins that might have transpired during the writing of this book. But you
can find all the plugins for CityEats.com on the websites shown here:

www.wilshireone.com/textpattern-plugins

rss_admin_db_manager

rss_admin_show_adv_opts

rss_google_map

rss_if_search_results

rss_unlimited_categories

8326CH17.qxd 4/20/07 12:29 PM Page 366

http://forum.textpattern.com/viewtopic.php?id=14218

tcm_rating

Once each plugin is installed, make sure to click No in the Active column to enable the use
of the TXP plugin. When the plugin is active, No changes to Yes.

In most cases, that’s all it takes to install plugins. However, since one of the plugins will add
an additional tab to the TXP interface at the main navigation level, there is some additional
work to do.

After you install any plugin, a quick read of the help text associated with it is usually
necessary and helpful. You can view any help/documentation associated with a plugin by
clicking the View link. So do that now. Click the View link for the tcm_rating plugin.
The installation instructions show that a trip to the Extensions tab is required for the
tcm_plugin to function.

Go to the Extensions tab by first clicking the Admin tab (it is located to the right of the
Admin tab). Click the Admin tab first because the Extensions tab is not available when you
are on the Plugins tab. Open this tab to complete the installation of the tcm_rating plugin.

Now that you have completed adding the necessary plugins, you are done with the Admin
section of TXP. If you are curious about the functionality of each plugin you just uploaded,
hold tight; I’ll explain the plugins as you use them.

Building a foundation with sections, categories, and
content

The foundation for a TXP site can be found in the manipulation and creation of sections
and categories. Because the default TXP install comes with a foundation already in place,
you need to mold and add to what is already there to support CityEats.com.

Removing default settings, and adding one section
To begin, navigate to the Images tab (Content ä Images). You’ll remove the only image
being managed by TXP. Click the gray x button to remove the divider.gif image.

Next, navigate to the Articles tab (Content ä Articles) and remove the only article in the
TXP system (First Post). Here you must select the article with the checkbox. Then, from the
drop-down menu labeled With selected, select Delete and click the Go button.

From here, navigate to the Categories tab (Content ä Categories). Locate Link Categories,
which should be showing the default link category Textpattern. Select this category with the
checkbox and then delete the Textpattern category by using the drop-down menu. Next,
select all the article categories that are included in the default installation and delete
them. The only category that should be left on the page at this point should be the Site
Design category, which is an image category.

Next, navigate to the Sections tab (Presentation ä Sections). Here you remove the default
sections and add the single section (besides the section called default, which can’t be

CASE STUDY: BOISECITYEATS.COM

367

17

8326CH17.qxd 4/20/07 12:29 PM Page 367

removed) that is used on CityEats.com. Simply clicking the x button associated with the
default sections removes the sections from the system. Once this is complete, enter a
section called the-eats by placing the text into the box by the button labeled Create and
then click the Create button. After creating this section, notice several settings associated
with the-eats section. You’ll come back to configure this section momentarily.

Creating categories
Article categories are used inside TXP for organizing articles by the nature of their content,
not by their location in the navigation structure. That is what sections are used for.
CityEats.com uses article categories as a way of classifying each dining establishment.
Some might call this tagging or metadata. The default installation of TXP allows only two
article categories for any given article, but the rss_unlimited_categories plugin gives
the capability to add an unlimited number of article categories to an article. Before an
article/dining establishment can be tagged with categories/tags, all the appropriate article
categories for CityEats.com must be added into the TXP system.

Since CityEats.com has more than just a couple of categories, and adding them all by
hand is somewhat time-intensive, I’ll show you two ways to add the appropriate article cat-
egories: the long way and a shortcut for those willing to get their hands a little bit dirty
with SQL.

The first method of adding all the necessary categories for CityEats.com is to do so by
hand. That is, you can enter each category in the Article Categories text field and click Create.
Now navigate to the Categories tab (Content ä Categories). Open up the categories.txt
text file that was provided with this chapter and enter each of the categories into TXP
using the article categories found in the text file.

A less-laborious way of adding the categories is to use the rss_admin_db_manager plugin,
which was installed earlier. What I am about to demonstrate is not a TXP-supported
method for adding categories; it’s a shortcut for adding a bunch of categories to the data-
base. It isn’t usually possible with the default installation of TXP, but the rss_admin_
db_manager plugin enables running SQL statements through the TXP interface.

Navigate to the run sql tab (Extensions ä run sql). Open up the text file called
categoriesSql.txt in the supporting materials for this chapter. Cut and paste the con-
tents of the categoriesSql.txt file into the text field on the run sql tab and click the red
Run button. This should return the SQL statements (70 of them) in green below the text
field. You have one last thing to do before the sections are correctly added: Navigate to
the Categories tab (Content ä Categories) and enter a dummy article category called AAA.
Click the Create button; after the page reloads, all the categories inserted with SQL now
show up. Remove the AAA article category—and that’s it!

Entering content
With the categories all set up and ready to go, navigate to the Write tab (Content ä Write).
This is where you’ll enter each of the dining establishments on the CityEats.com proto-
type site. Before you enter any articles, however, have a look around the user interface.
Because of the rss_admin_show_adv_opts plugin installed earlier the custom fields, shown
in Figure 17-4, are by default showing up in the left column. If this plugin were not
installed, by default these fields would be hidden behind an Advanced Options link.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

368

8326CH17.qxd 4/20/07 12:29 PM Page 368

Figure 17-4. Custom fields for CityEats.com

Additionally, changes made earlier in Preferences that are not in the default install include
having comments set to on by default (click More in the right column to view the com-
ment settings) and not allowing Textile to parse any of the markup entered in the Title,
Body, or Excerpt text inputs. While it might not be labeled as such, the (X)HTML text field
and textarea inputs in the middle of the page (refer to Figure 17-4) are considered the Title
and Body inputs.

Notice also that the additional input form, Categorize, is filled with all the article categories
that were entered and is shown in the right column under Sort and Display (see Figure 17-5).
This is an additional field added by the rss_unlimited_categories plugin. This form input
enables you to select multiple article categorizes for each article/dining establishment
entered into the system.

CASE STUDY: BOISECITYEATS.COM

369

17

8326CH17.qxd 4/20/07 12:29 PM Page 369

Before actually entering any content, it might be a good idea to visit the completed
CityEats.com website and view an article/dining page. To do so, enter the following URL:
http://cityeats.textpatternsolutions.com/the-eats/asiagos.

The content found on this page pertaining to Asiago’s restaurant is the same type of con-
tent that needs to be entered for each dining establishment in the CityEats.com site. Let’s
take the Asiago’s content as example data and enter it into the version of CityEats.com
that has been developed in this chapter. If you are not already there, navigate to the Write
tab (Content ä Write) of TXP and enter the following content (see Figure 17-6):

Title: Asiago’s

Body: Walking into Asiago’s takes you away to simpler times. The dining room has rus-
tic, handmade tables, hand troweled walls with fieldstone, wooden doors along the patio
that open for warm weather dining, and a rugged wooden pergola twined with
grapevines standing over all. The unpretentious setting invites you to relax and escape
from the worries of the day, catch up with friends, or gather the family.

Excerpt: 11am-10pm M-F, 4pm-11pm Sa-Su

Categorize: Italian, Outside Seating, Website (you can select multiple items by using
the Ctrl key)

Address: 3423 N. Cole Rd

City: Boise

State: ID

Zip: 83704

Website: http://www.asiagos.com

Phone: 323 -1469

OnlineMenu: yes

TakeOut: yes

Maybe you noticed (and maybe you didn’t), but no data was entered for the custom fields
called Price and Delivery. Leaving the Price and Delivery custom fields blank tells TXP that
this information is not available for this specific dining entry (this will make a little more
sense in a bit).

Figure 17-5. Screenshot showing the Categorize input

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

370

8326CH17.qxd 4/20/07 12:29 PM Page 370

Figure 17-6. Asiago’s data

After you enter the Asiago’s data into TXP, make sure that you click Save to save the data.

Now there is only one article/dining entry in the TXP system. For the purpose of this
case study, it’s highly recommended that you enter a couple more article/dining entries.
You can use the data from the CityEats.com website located at http://cityeats.
textpatternsolutions.com as dummy data, which you need to enter by hand, or you can
always enter a few dining establishments that are local to your own home town.

Alternatively, if you feel comfortable with SQL and can live with a few database inconsis-
tencies for the sake of this exercise, you can add the content from the http://cityeats.
textpatternsolutions.com site to your own version of CityEats.com by using SQL state-
ments. To do this, open the data.txt file included with the files for this chapter and run
the SQL statements in the run sql tab in TXP (Extensions ä run sql). This is very similar to
the way you added the article categories. Next, you’ll build the presentation of the site.

CASE STUDY: BOISECITYEATS.COM

371

17

8326CH17.qxd 4/20/07 12:29 PM Page 371

Preparing the presentation

If the sections and categories are the foundation, the presentation is the visual structure
built on top of the foundation. Thus far, a great deal of time has been spent building the
foundation to the CityEats.com website. Next you’ll begin to create the presentation for
CityEats.com by removing the default styles and adding styles of your own.

Adding new styles and removing the default styles
Navigate to the Style tab (Presentation ä Style). By default, the styles that are part of the
default installation are loaded onto the page here. Replace the default styles with the fol-
lowing Cascading Style Sheet (CSS) declarations. These styles have also been included with
the support files (css-default.txt), so you can simply cut and paste these styles into the
text input.

body {
background-color:#fff;
color:#333333;
margin: 20px 50px;
}

/*base links*/
a:link {color: #990000;}
a:visited {color: #990000;}
a:hover {color: #990000;text-decoration: none;}
a:active {color: #990000;}

hr{
border: 0;
color: #ccc;
background-color: #ccc;
height: 1px;
}

#head, #footer{
text-align:center;
}

#footer{
clear:both;
}

h1{
background-color:#716844;
padding:20px 20px;
color: #fff;
}

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

372

8326CH17.qxd 4/20/07 12:29 PM Page 372

h1 a:link, h1 a:visited, h1 a:active{
color: #fff;
text-decoration: none;
display:block;
}

#leftCol{
float:left;
width:56%;
padding:0 2% 0 1%;
border-right:1px solid #ccc;
min-height:500px;
}

#rightCol{
float:right;
width:37%;
padding:0 2% 0 1%;
min-height:500px;
}

.comments{
list-style:none;
padding-left:0;
}

small{
color:#666;
}

#cpreview{
background-color:#FFFFCC;
padding:10px;
margin:20px 0;
}

.reviewError, .comments_error {
color: red;
}

If you are not familiar with CSS declarations and their use in TXP, refer to Chapter 11 or
grab a book on the topic (I recommend CSS Mastery by Friends of ED).

Once these styles are added, make sure to click Save. Besides the default styles, one addi-
tional stylesheet needs to be added. Click the Create or load new style link in the left
column of the Style tab. The name of the stylesheet is css-rating. These styles are the
associating styles necessary to use the tcm_rating plugin, which is a simple star rating sys-
tem. Enter the following styles into the input box and click Save (these styles can also be
found in a text file called css-rating.txt):

CASE STUDY: BOISECITYEATS.COM

373

17

8326CH17.qxd 4/20/07 12:29 PM Page 373

/* styles for the star rater */

.star-rating{
list-style:none;
margin: 0px;
padding:0px;
width: 125px;
height: 25px;
position: relative;
background: url(add image path here) top left repeat-x;
}

.star-rating li{
padding:0px;
margin:0px;
/**/
float: left;
/* */
}

.star-rating li a{
border: 0;
display:block;
width:25px;
height: 25px;
text-decoration: none;
text-indent: -9000px;
z-index: 20;
position: absolute;
padding: 0px;
}

.star-rating li a:hover{
background: url(add image path here) left bottom;
z-index: 2;
left: 0px;
}

.star-rating a.one-star{
left: 0px;
}

.star-rating a.one-star:hover{
width:25px;
}

.star-rating a.two-stars{
left:25px;
}

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

374

8326CH17.qxd 4/20/07 12:29 PM Page 374

.star-rating a.two-stars:hover{
width: 50px;
}

.star-rating a.three-stars{
left: 50px;
}

.star-rating a.three-stars:hover{
width: 75px;
}

.star-rating a.four-stars{
left: 75px;
}

.star-rating a.four-stars:hover{
width: 100px;
}

.star-rating a.five-stars{
left: 100px;
}

.star-rating a.five-stars:hover{
width: 125px;
}

.star-rating li.current-rating{
background: url(add image path here) left center;
position: absolute;
height: 25px;
display: block;
text-indent: -9000px;
z-index: 1;
}

.ratingerror {
color: red;
}

The css-rating styles just entered require an image—a star image, to be exact. Locate the
ratingStar.gif file that is part of the supporting files for this chapter. Next, navigate to
the Images tab (Content ä Images) and add the ratingStar.gif image to TXP by brows-
ing for the file, selecting it, and then clicking the upload button. Locate the input on the
page labeled Category, select the site-design category, and click Save. On the screen that
follows, take notice of the ID of the newly added image (it is probably 2). Next, you need
to find the path to the newly added image.

CASE STUDY: BOISECITYEATS.COM

375

17

8326CH17.qxd 4/20/07 12:29 PM Page 375

If you do not know the path to the images directory, it’s fairly easy to figure out. Navigate
to the Preferences tab (Admin ä Preferences) and locate the label Site URL. Simply take the
Site URL value and add on /images/ to the end of it—you’ll have the path to the images
directory that is used by TXP. For example, the path looks like this:

Site URL/images/

Once you have figured out the path to the images directory, add on the name of the
image to the end of the path. The name of the image in this case is the ID including the file
extension. Unless you have deviated from the default installation of TXP the image is
2.gif. The full path to the image is this:

Site URL/images/2.gif

Now make sure you add it to the css-rating styles where indicated by the add image path
here text. As usual, make sure that you save the changes before leaving the Styles tab.

Adding a new page and removing default pages
With the stylesheets squared away, you can now begin to build the actual pages of the
website by beginning to use sections, pages, and forms together to set in place the actual
web pages that make up CityEats.com. Navigate to the Pages tab (Presentation ä Pages).
The first thing you need to do is to delete the archive page (it should be the top page in
the right column). Click the gray button to the right of the archive text, which deletes this
page from the TXP system. (You will not be using an archive for CityEats.com.)

The CityEats.com website uses only four pages: default, error_default, and two pages
that you need to create: one called the-eats and the other called error_404. At the bot-
tom of the middle column, you see the Save button. With the default page open, enter
the name the-eats in the text input to the right of the Save button and click the Copy but-
ton. You have now created the the-eats page by duplicating the default page and
renaming it the-eats. Now do the same process for the error_404 page.

With all the pages created for CityEats.com, you now need to remove the default markup
for each of these four pages and wipe the slate clean, so to speak. One by one, select each
of the four pages, remove all markup associated with the page, and click Save. At this
point, you should not have any markup associated with the four pages.

Because you have finally created a page called the-eats, you need to return to the
Sections tab where you added the section called the-eats and tell this section to use
the page named the-eats. Navigate to the Sections tab (Presentation ä Sections), locate
the input called Uses page that is associated with the the-eats section, and select the
the-eats page from the drop-down menu.

Before you save, however, you need to make one additional configuration to the the-eats
section—you have to make sure that when you create a new article/dining entry, by
default the entry will be in the the-eats section. To do this, simply check the Yes radio
button for Selected by default?. Save the changes by clicking the Save button associated
with the the-eats section. Only one section can be selected by default, so the choice was
easy since you created only one section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

376

8326CH17.qxd 4/20/07 12:29 PM Page 376

Removing default forms and adding new forms
Navigate to the Forms tab (Presentation ä Forms). Take a quick inventory of the forms
already created and displayed in the right column of the page. Notice that certain forms
are selectable by using a checkbox, and certain forms inherent to the TXP system are
unselectable (they can’t be deleted; they can only be changed). Let’s clean this up a bit by
getting rid of the forms that are not needed. Using the checkbox, select the lofi, noted,
plainlinks, single, search_results, and popup_comments forms. All the forms that are selec-
table will be deleted. With these forms selected, choose Delete from the drop-down menu
and click the Go button to delete them.

Now that the forms you don’t need are gone, add the forms you do need. In the right col-
umn above the list of forms, you see a link that says Create new form. Using this link, add
the six new forms exactly as they appear in Table 17-1 (make sure that you click Create new
form each time).

Table 17-1. Name and type of forms to be added

Name Type

comment_preview comment

comment_form_preview comment

master_foot misc

master_head misc

search_results misc

search_UI misc

Building the presentation using Pages and Forms

With the presentational preparation efforts complete, you can now begin to actually build
the presentation using Pages and Forms as the containers for the (X)HTML and TXP tags.

Creating the home page and error page
From here on, you’ll jump back and forth between the Pages tab and the Forms tab. Keep
in mind that while the CityEats.com site is made up of only two TXP pages (default and
the-eats), the pages themselves can have multiple uses depending upon how the TXP sys-
tem uses the page and interprets the TXP tags on the page. For example, the default page
is used as both the home page and the search results page. Also, the the-eats page is
used by the system as an article list page and individual article page. If this does not make
sense yet, it will shortly as you begin to add markup to our pages and forms.

CASE STUDY: BOISECITYEATS.COM

377

17

8326CH17.qxd 4/20/07 12:29 PM Page 377

Navigate to the Pages tab (Presentation ä Pages). On each of the pages in the right col-
umn you’ll add the following comments: (X)HTML and TXP tags. Make sure that you open
each page (default, error_404, error_default, and the-eats), add the following code,
and then press Save:

<!-- master head -->
<txp:output_form form="master_head" />

<!-- content head -->
<div id="head">
</div>

<!-- content-->
<div id="content">
</div>

<!-- master footer -->
<txp:output_form form="master_foot" />

The code added to each page has two TXP tags (shown in bold) that simply output the
contents of a form to a page. Currently, there is nothing in either the master_head or
master_foot form. So jump over to the Forms tab and add the code you want to output
on each of the pages you added the <txp:output_form /> tag to. Select the master_head
form and add the following comments in the input: (X)HTML and TXP tags. Make sure to
click Save so the TXP system will add the markup to the form.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" å

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" >

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<meta name="author" content="cityeats.com © " />
<meta name="description" content="<txp:site_slogan />" />

<!-- microsoft handlers -->
<meta name="mssmarttagspreventparsing" content="true" />
<meta http-equiv="imagetoolbar" content="false" />

<!-- styles -->
<style type="text/css" media="all">
@import "<txp:css n="default" />";
<txp:if_individual_article>
@import "<txp:css n="css-rating" />";
</txp:if_individual_article>
</style>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

378

8326CH17.qxd 4/20/07 12:29 PM Page 378

<!-- javascript -->
<script type="text/javascript" src="<txp:css n="js-global" />" >å

</script>
<txp:if_individual_article>
<txp:tcm_rating_js_tag />
<txp:rss_google_map_js apikey="ABQIAAAAFYzfBwvqscQO15Y4Cyim7hS3- å

4ZtJuCaT8RY8Z5dhg1xKhWE2hSmt1dyzBphVEf4lRNHZFwLnXERWg" />
</txp:if_individual_article>

<title><txp:page_title separator=" - " /></title>

</head>

<body>

You should recognize the bold code as TXP tags. Starting from the top, the first TXP tag in
the code simply outputs the site slogan. I’m using it here to provide content for the
description meta element. Next, the <txp:css /> tag is used twice to load the correct
stylesheet, depending upon whether the current page using this form is an individual arti-
cle. I make this distinction by wrapping the link to the css-rating stylesheet inside the
<txp:if_individual_article> tag.

The next block of TXP tags uses the same if statement tag to include links to JavaScript
files. If the page being viewed is an individual article, the JavaScript is included on this
page. And finally there is a TXP title tag that is used to create a unique title for each page
that uses this form. Keep in mind that all the pages (every dining article page) use this
form, and it’s the TXP tags that enable you to make unique choices and output unique
content based on where you are in the CityEats.com website.

Before proceeding, and if you are following along and constructing this site on your
own server, you need to visit www.google.com/apis/maps/signup.html and get your own
Google Maps API key. Visit the link, read the instructions, and (once you have your
own key) make sure that you update <txp:rss_google_map_js /> with your own API key.

Now open the master_footer form and add the following (X)HTML (make sure to click
Save so the TXP system adds the markup):

<hr />
<div id="footer"><small>case study from: <a title="Textpattern å

Solutions"
href="http://www.textpatternsolutions.com">textpatternsolutions.com
</small></div>
</body>
</html>

All you have done here is create two templates (forms) that are included on each and
every page (default, error_404, error_default, and the-eats) used by TXP.

Jump back to the Pages tab (Presentation ä Pages) and select the default page. Locate
the <div> element with an id of head. You’ll place an if else TXP statement here, but

CASE STUDY: BOISECITYEATS.COM

379

17

8326CH17.qxd 4/20/07 12:29 PM Page 379

first let me explain why. By default, and in consideration of our current TXP configuration,
TXP uses the default page as the home page as well as the page that word search results
will be returned to. So you need to use an if search tag to determine when the page is
being used as the home page or the word search results page. The tags necessary to create
this type of functionality are highlighted in bold:

<!-- content head -->
<div id="head">

<txp:if_search>
<h1><txp:link_to_home><txp:sitename /></txp:link_to_home></h1>
<txp:else />
<h1><txp:sitename /></h1>
<p><txp:site_slogan /></p>
</txp:if_search>

</div>

If the default page is being used as a search results page, you must make the site name link
back to the home page. I accomplished this by using the TXP tags <txp:link_to_home>
and <txp:sitename />. Now, if the page is not being used as the search results page, it’s
obviously being used as the home page. If that’s the case, output the site name without it
linking and then add the site slogan. Before you move on, make sure that you have added
that last bit of code to the default page inside the <div> element with an id attribute of
head.

The other three pages (error_404, error_default, and the-eats) also need to have
the site name added to them without the use of the <txp:if_search> tag. Open the
error_404, error_default, and the-eats pages and add the following (X)HTML and TXP
tags inside the <div> element with an id of head:

<!-- content head -->
<div id="head">

<h1><txp:link_to_home><txp:sitename /></txp:link_to_home></h1>

</div>

Before you start filling out the default page, fix up the error_404 and error_default
pages. Open the error_404 page and replace the <div> element with an id of content
with the following markup (make sure that you click Save to save the changes):

<div id="content" style="text-align:center;">

<h3>Sorry, but these eats are gone. Please return to the å

<txp:link_to_home>homepage</txp:link_to_home> to find more eats.</h3>

</div>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

380

8326CH17.qxd 4/20/07 12:29 PM Page 380

If you like, change the error message to anything you want. Just remember that this is the
page that users see when there is a 404 server error.

Next, open the error_default page and replace the <div> element with an id of content
with the following markup:

<div id="content">

<h3><txp:error_status /><h3>
<p><txp:error_message /></p>

</div>

Return to the default page and locate the <div> element with an id of content. Since the
content of the default page is different depending upon whether the page is being used
as a search page or home page, you need to add an if else statement to fork the
markup. Inside the content <div>, add the following markup:

<!-- //////////////// Search Page //////////////// -->
<txp:if_search>

<txp:else />

<!-- //////////////// Homepage //////////////// -->

</txp:if_search>

Below the Homepage comment and before the closing <txp:if_search> tag, add a new
<div> element with a style attribute. The style attribute has a value of text-align:
center. Inside the <div> element, you’ll add a <txp:output_form /> tag to output the
search_UI form. In all, the markup should look as follows:

<div style="text-align:center;">
<txp:output_form form="search_UI" />
</div>

Don’t forget to save the page after you do this.

Right now, the search_UI form does nothing. If you have visited the CityEats.com web-
site, however, you know that all the pages on the site include searching functionality (by
name or by tag). The search_UI form is basically what you see on the home page of
CityEats.com. This same functionality can be found on a search results page, a tag search
results page, and an article page (or in this case, a page with a restaurant entry on it). Let’s
go add some markup to the search_UI form.

Navigate to the Forms tab (Presentation ä Pages) and select the search_UI form. Here we
are going to add the markup that creates the searching functionality on CityEats.com.
Enter the following markup and make sure to click Save:

CASE STUDY: BOISECITYEATS.COM

381

17

8326CH17.qxd 4/20/07 12:29 PM Page 381

<form action=" <txp:site_url />" method="get">
<label for="q">Search By Name:</label>

<input type="text" onblur="if(this.value == ''){this.value = å

'Them eats are awaiting ya!'}" onfocus="this.value = '';" alt="search" å

value="Example: Mai Thai" style="width:200px" name="q" />
<input type="submit" value="Go" />
</form>
<p>or, Search By Tag:</p>
<txp:rss_unlimited_categories_cloud section="the-eats" å

linktosection="the-eats" break="," />

The TXP tag <txp:search_input /> usually suffices, but for CityEats.com I wanted access
to the (X)HTML that is generated by the <txp:search_input /> tag. I have done so to add
a bit of JavaScript to the <input> element, which is shown in bold. This JavaScript removes
the default text inside the <input> element upon focus, and upon blur it adds text back
into the <input> element. Replacing the <txp:search_input /> tag with your own
markup is as simple as making sure that the <input> has an attribute with a value of q, and
the <form> element has an action attribute with a value of <txp:site_url />.

The next section of bold code is a plugin tag. Remember that you installed a plugin to alter
how TXP categories work. The rss_unlimited_categories plugin creates multiple categories
to be used as a tagging system. Here you use a custom tag from the rss_unlimited_
categories plugin that outputs a tag cloud. If you look closely at the tag, the attributes
should be self-explanatory since you use only one section for the CityEats.com website
(the-eats).

If you are reconstructing CityEats.com as you are reading this chapter, you can now visit
the home page and should see the same exact home page found at the CityEats.
textpatternsolutions.com site (see Figure 17-7). Of course, nothing functions correctly
yet because you have not yet added the all-powerful <txp:article> tag.

Figure 17-7. The home page

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

382

8326CH17.qxd 4/20/07 12:29 PM Page 382

Navigate back to the Pages tab and start editing the default page again. After the search
page comment and directly after the <txp:if_search> tag, add the following markup
(make sure that you click Save to save the changes):

<div id="rightCol">
<txp:output_form form="search_UI" />
</div>
<div id="leftCol">
<h3>Name search results:</h3>
<hr />
<txp:article />
<txp:rss_if_no_search_results>
<p>Your search returned 0 results.</p>
</txp:rss_if_no_search_results>
</div>

The code that you added to the default page shows only on a word search results page
because it’s encapsulated inside a <txp:if_search> tag. Notice two new <div> elements
that will divide the page in two columns. In the right column, you output the same
search_UI form that is output on the home page. In the left column, you find the all-
powerful <txp:article> tag. In this context, the tag is being used to output search results.
Inside this column you make use of another handy plugin from Rob Sable called
rss_if_no_search_results, which is simply an if tag that outputs its contents into the
page if in fact the word search returns no results.

With this code added to the default page, you now need to jump back to the Forms tab and
add markup for the form that is used to produce search results. Open the search_results
form and add the following markup (make sure that you click Save to add the markup to
the search_results form):

<h4><txp:permlink><txp:search_result_title /></txp:permlink></h4>
<p><txp:search_result_excerpt /></p>
<hr />

The markup you just added is the template used to produce the word search results. With
this coded added, the word search (or in this case, the restaurant name search) should
now be functioning. You can test it out by viewing the version of CityEats.com (home
page) you have been developing in this chapter and using the Search By Name input form
to do a site search. You might try searching the site for the word Food.

Believe it or not, you are now done with the default page and the forms that depend on
it. Next, you will deal with the the-eats page.

Creating the article list and individual article
Before you begin adding markup to the the-eats page, note that this page is associated
with the the-eats section. So when you visit this section of the site, the system uses the
the-eats page to output all articles (restaurants) in a list that are associated with the
the-eats section. Once one of these articles (restaurants) has been selected, the same exact
page (the-eats) is used to output an individual article view. So the the-eats page func-
tions as an article list template as well as an individual article template.

CASE STUDY: BOISECITYEATS.COM

383

17

8326CH17.qxd 4/20/07 12:29 PM Page 383

Navigate to the Pages tab and open the the-eats page. Locate the <div> element that has
an attribute id value of content. Inside the content <div> add the following code (make
sure to click Save to add the markup to the the-eats page):

<!-- //////////////// Tag List //////////////// -->
<txp:if_article_list>
<div id="rightCol">
<txp:output_form form="search_UI" />
</div>
<div id="leftCol">
<h3>Tag search results for å

<txp:category />:</h3>
<hr />
<txp:rss_unlimited_categories_article_list />
</div>
</txp:if_article_list>

I have labeled this block of code Tag List (instead of article list) because when a tag is
clicked in the tag cloud, the TXP system returns a list of all the articles (restaurants) that
have been categorized with that word. Essentially, it’s a list of restaurants that contain a
particular tag (category). Since you use the rss_unlimited_categories plugin to mimic
the concept of tagging, the list page requires the <txp:rss_unlimited_categories_
article_list /> tag instead of the normal <txp:article />. If it’s not obvious, I am
using the idea of a list of articles to fuel the Search By tag functionality. In reality, the
Search By tag functionality is simply a view of the the-eats page that lists all the articles
(restaurants) assigned to a single category.

As mentioned earlier, since the the-eats page is used for both the list view and individual
article view, you also need to add markup to the the-eats page that handles the individ-
ual article view. You can do this by providing a <txp:article /> tag when the the-eats
page is in an individual article view. Place the following markup after the tag list chunk of
markup you just added (make sure to click Save to add the markup to the the-eats page):

<!-- //////////////// Individual Restaurant //////////////// -->
<txp:if_individual_article>
<div id="rightCol">
<txp:output_form form="search_UI" />
</div>
<div id="leftCol">
<txp:article />
</div>
</txp:if_individual_article>

If you study both chunks of markup just added, you might conclude that it is a bit verbose.
I could have optimized this markup down to less code by using an <txp:else /> tag, but
for the sake of readability I have completely separated the two chunks of markup. In that
last chunk of markup, the <txp:article /> tag is used instead of the <txp:rss_
unlimited_categories_article_list /> tag, which is necessary for the individual article
view to function correctly.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

384

8326CH17.qxd 4/20/07 12:29 PM Page 384

Next you’ll edit the default article form, which is used by both the <txp:rss_unlimited_
categories_article_list /> and the <txp:article /> tags. Navigate to the Forms tab
and open the default article form. Remove the default markup found in this form and add
the markup that will be used by the <txp:rss_unlimited_categories_article_list />
tag. Add the following markup to the default article form (make sure to click Save to add
the markup to the default article form):

<txp:if_article_list>
<h4><txp:permlink><txp:title /></txp:permlink></h4>
<hr />
</txp:if_article_list>

Here you are checking to see what view is needed; if it’s the article list view used by the
<txp:rss_unlimited_categories_article_list /> tag, output its title and a permanent
link to an individual page. With this code added, the tag functionality should now be
enabled. You can test this out by viewing the version of CityEats.com you have been
developing in this chapter and clicking a word in the tag cloud.

In the default article form, you’ll add all the content that appears on a individual article
view wrapped by an <txp:if_individual_article> tag. Start by adding the following
markup after the ending </txp:if_article_list> tag:

<txp:if_individual_article>

</txp:if_individual_article>

Inside the <txp:if_individual_article> add several lines of markup that produce an
individual article view (a single restaurant view):

<h2><txp:permlink><txp:title /></txp:permlink></h2>
<txp:tcm_rating_form /><txp:tcm_rating_num noratings="" />

<p>Desciption:</p>
<p><txp:body /></p>

<txp:if_excerpt>
<p>Hours: <txp:excerpt /></p>
</txp:if_excerpt>

This chunk of code outputs the title of the article/restaurant, the star rating plugin that
appears below the title, the body of the article, or the description of the restaurant, and
the excerpt if an excerpt was entered for the restaurant. (Remember that the excerpt is
the input field you used to hold the hours associated with a restaurant.)

Below the markup just added, add all the custom field data for each entry:

<p>Phone:
<txp:if_custom_field name="Phone">
<txp:custom_field name="Phone" />
<txp:else />
n/a

CASE STUDY: BOISECITYEATS.COM

385

17

8326CH17.qxd 4/20/07 12:29 PM Page 385

</txp:if_custom_field>
</p>

<p>Website:
<txp:if_custom_field name="Website">
<a href="<txp:custom_field name="Website" />">å

<txp:custom_field name="Website" />
<txp:else />
n/a
</txp:if_custom_field></p>

<p>Average price per person:
<txp:if_custom_field name="Price">
<txp:custom_field name="Price" /><small> (5$ - 30$$$$$$ a person) å

</small>

<txp:else />
n/a
</txp:if_custom_field></p>

<p>Online menu:
<txp:if_custom_field name="OnlineMenu">
<txp:custom_field name="OnlineMenu" />
<txp:else />
n/a
</txp:if_custom_field></p>

<p>Delivery:
<txp:if_custom_field name="TakeOut">
<txp:custom_field name="TakeOut" />
<txp:else />
n/a
</txp:if_custom_field></p>

<p>Take out:
<txp:if_custom_field name="Delivery">
<txp:custom_field name="Delivery" />
<txp:else />
n/a
</txp:if_custom_field></p>

<hr />

Note that each if else statement in the code could be shortened by using the default
attribute of the custom_field tag. Using this attribute, it functions similar to an if else
statement (if the custom field is blank, the default value is used). For example:

<txp:custom_field name="Phone" default="n/a" />

Doing things this way shortens the code.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

386

8326CH17.qxd 4/20/07 12:29 PM Page 386

The section of markup just added outputs the custom field data entered into the Write tab
for each restaurant. If the field is left blank, the text n/a is outputted. Next, add the
markup for the address, the Google map, and the link to the Google map:

<p>Address: <txp:custom_field name="Address" />, å

<txp:custom_field name="City" /> <txp:custom_field name="State" />å

<txp:custom_field name="Zip" /></p>

<txp:rss_google_map section="the-eats" addfield="Address" å

cityfield="City" statefield="State" zipfield="Zip"å

width="380" height="280" zoom="3" usearticle="1" />

<p><a href="http://maps.google.com/maps?f=d&hl=en&saddr=&daddr=å

<txp:custom_field name="Address" /> å

<txp:custom_field name="City" /> å

<txp:custom_field name="State" /> <txp:custom_field name="Zip" />">å

Get directions to here, from...</p>

<hr />

Notice the use of the custom field’s tags. I use the custom fields in this markup to output
the address of the restaurant for use with the rss_google_map plugin, to output the
address, and to create a link to Google Maps with the address in a query string (shown in
bold).

After the <hr />, add the following markup:

<p>Tags for these eats:</p>
<txp:rss_unlimited_categories_filedunder section="*"
linktosection="the-eats" />

<hr />

This chunk of markup outputs all the tags (really categories) that are associated with a
particular restaurant. Notice the use of the custom tag rss_unlimited_categories_
filedunder.

Finally you add the commenting system to the page for a specific restaurant. In the con-
text of CityEats.com, you can consider the commenting system to be a review system that
enables the user to leave a review of the restaurants. After the last chunk of code added,
add the following code:

<txp:if_comments>
<txp:comments />
<txp:else />
<p class="reviewError">No one has reviewed these eats.</p>
</txp:if_comments>

<p><txp:comments_invite textonly="1" showalways="1" å

showcount="0" />:</p>

CASE STUDY: BOISECITYEATS.COM

387

17

8326CH17.qxd 4/20/07 12:29 PM Page 387

<txp:if_comments_preview>
<div id="cpreview">Comment Preview
<hr />
<txp:comments_preview form="comment_preview" />
</div>
<txp:comments_form preview="1" form="comment_form_preview" />
<txp:else />
<txp:comments_form />
</txp:if_comments_preview>

You are first checking to see whether there are any comments; if there are, output the
comments to the page. If there are no comments, let the user know that no one has
reviewed this restaurant as of yet. After that, add the appropriate TXP tags to output the
commenting system.

At this point, save the default article form and open up the comment_form. Add the fol-
lowing markup to this form and click Save:

<txp:comments_error wraptag="ul" break="li" />
<txp:comments_error />
<table cellpadding="4" cellspacing="0" border="0">
<tr>
<td align="right" valign="top"><label for="name">
<txp:text item="name" />
</label>

</td>
<td valign="top"><txp:comment_name_input />
</td>

</tr>
<tr>
<td align="right" valign="top"><label for="email">
<txp:text item="email" />
</label>

</td>
<td valign="top" colspan="2"><txp:comment_email_input />
</td>

</tr>
<tr>
<td valign="top" align="right"><label for="message">
<txp:text item="Review" />
</label>

</td>
<td valign="top" colspan="2"><txp:comment_message_input />
</td>

</tr>
<tr>
<td> </td>
<td><txp:comment_preview />
</td>

</tr>
</table>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

388

8326CH17.qxd 4/20/07 12:29 PM Page 388

Next, open up the comment_form_preview and add the following markup (make sure that
you click Save):

<txp:comments_error />
<table cellpadding="4" cellspacing="0" border="0">
<tr>
<td align="right" valign="top"><label for="name">
<txp:text item="name" />
</label>

</td>
<td valign="top"><txp:comment_name_input />
</td>

</tr>
<tr>
<td align="right" valign="top"><label for="email">
<txp:text item="email" />
</label>

</td>
<td valign="top" colspan="2"><txp:comment_email_input />
</td>

</tr>
<tr>
<td valign="top" align="right"><label for="message">
<txp:text item="Review" />
</label>

</td>
<td valign="top" colspan="2"><txp:comment_message_input />
</td>

</tr>
<tr>
<td> </td>
<td><txp:comment_preview />
<txp:comment_submit />

</td>
</tr>

</table>

Open up the comment_preview, add the following markup, and click Save:

<txp:message />

And finally, open the comments form (not to be confused with the comment_form) and add
the last piece of markup that follows:

<txp:message />

<p class="small">— <txp:comment_name /> · <txp:comment_ å

time /> · <txp:comment_permlink>#</txp:comment_permlink></p>

CASE STUDY: BOISECITYEATS.COM

389

17

8326CH17.qxd 4/20/07 12:29 PM Page 389

Click Save. You have completed the CityEats.com prototype. You can now view the site in
its fully functional state. By the way, if you are wondering about the comments_display
form (or files and links form), it is not used. I would delete it, but it’s inherent to the sys-
tem and deleting it would blow up the world.

Summary
While the visual appearance of the site has much to be desired, it is a strong base of func-
tionality to build around. If you think about it, the CityEats.com prototype could be
shaped into any sort of review site imaginable. Change the content and the custom form
fields a bit, and you can create a site about popular mountain biking destinations or the
best places to visit while in Texas. The possibilities are endless.

I hope this case study has demonstrated the simplicity of TXP and the power of the robust
plugin architecture.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

390

8326CH17.qxd 4/20/07 12:29 PM Page 390

8326CH17.qxd 4/20/07 12:29 PM Page 391

PART SIX APPENDIXES

8326AppA.qxd 4/23/07 2:20 PM Page 392

A TAG REFERENCE

8326AppA.qxd 4/23/07 2:20 PM Page 393

Before you dive into the list of Textpattern tags (in alphabetical order), take a moment to
become acquainted with the tag entry template:

<txp:tag_name />

To help you see at a glance where and how tags can be used, this reference makes use of
four different icons, which you can see next to each tag reference entry heading. They rep-
resent (from left to right): single tags, container tags, page tags, and form tags.

Single tags are used by themselves:

<txp:tag_name />

Container tags are wrapped around something else (other Textpattern tags, plain text, or
XHTML):

<txp:tag_name>contents</txp:tag_name>

In addition, each tag name heading is formatted accordingly. For tags that can be used as
either single tags or container tags, the tag name heading reflects the format most com-
monly used.

Description
A general description of the tag.

Attributes (in alphabetical order)
attribute_name="[value],[value]" (specific values you can choose from)

attribute_name=" " (custom value)

Examples
See Chapter XX.

<txp:article />

Description
One or more articles from the currently viewed section or, if viewing the default section
(front page), from all sections set to display On front page? in the Sections tab.

Attributes
allowoverride="[1],[0]"

Whether to allow and use Override form for the current article.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

394

8326AppA.qxd 4/23/07 2:20 PM Page 394

Available values: 1 (yes) or 0 (no)

Default value: When viewing search results: 0; otherwise: 1

customfieldname=" "

Restrict to articles with specified value for specified custom field name. Replace
customfieldname with the name of the custom field.

Available values: Any custom field values to which you want to restrict your article
list

Default value: unset

form=" "

See “Common tag attributes” section. When used with listform, form is used for display
of individual articles only.

Default value: default

limit=" "

See “Common tag attributes” section.

listform=" "

Form used to format articles when viewing articles as a list.

Available values: Any article type form name

Default value: unset (form value is used)

keywords=" "

Restrict to articles with specified keywords.

Available values: Single keyword or comma-separated list of keywords

Default value: unset

offset=" "

Number of articles to exclude from the beginning of the list.

Available values: Any number

Default value: 0

pageby=" "

Split article list into several chunks by using article multiple times on a page, without
messing up older or newer navigation links. It tells article how many articles to jump for-
ward or back when an older or newer link is clicked.

TAG REFERENCE

395

A

8326AppA.qxd 4/23/07 2:20 PM Page 395

Available values: Any number

Default value: unset

pgonly="[1],[0]"

Increment the article count, but do not display anything. Used when you want to show the
number of search results or article navigation tags before the list of articles. Make sure
that other than pgonly, both article tags are identical.

Available values: 1 (yes) or 0 (no)

Default value: 0

searchall="[1],[0]"

Whether all searchable sections are displayed in search results. This attribute does not
override the Is searchable? setting in the Sections tab.

Available values: 1 (yes) or 0 (no, search only currently viewed section)

Default value: 1

searchform=" "

Form to format content when displaying as search results.

Available values: Any article type form name

Default value: search_results

searchsticky="[1],[0]"

Whether to include Sticky status articles in search results.

Available values: 1 (yes) or 0 (no)

Default value: 0

sort

See “Common tag attributes” section.

Available values: ID (article ID number), AuthorID (author login name), LastMod
(date and time last modified), LastModID (author of last modification login name),
Posted (date and time created), Title, Category1, Category2, comments_count
(number of publicly visible comments), Status, Section, Body, Excerpt, Keywords,
Image (article image), url_title, and custom_1 through custom_10, ascending
(asc) or descending (desc)

Default value: For search results, score desc (keyword relevancy score); otherwise,
Posted desc

status="[draft],[hidden],[pending],[live],[sticky]"

Restrict to articles with specified status.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

396

8326AppA.qxd 4/23/07 2:20 PM Page 396

Default value: live

time="[past],[future],[any]"

Restrict to articles published within specified time frame.

Default value: past

Examples
See Chapters 6–11 and 15–17.

<txp:article_custom />

Description
One or more articles with a variety of custom options.

Unlike article, article_custom always returns articles as a list and is not context-
sensitive. This means that although article can see articles only within the currently
viewed section/category/author and so on, article_custom can see all articles from all
sections/categories/authors and so on (unless you restrict it via the following attributes).

Attributes
allowoverride="[1],[0]"

Whether to allow and use Override form for the current article.

Available values: 1 (yes) or 0 (no)

Default value: 0

author=" "

Restrict to articles by specified author.

Available values: Any user login name

Default value: unset

category=" "

Restrict to articles within specified category.

Available values: Any article category name

Default value: unset

customfieldname=" "

Restrict to articles with specified value for specified custom field name. Replace
customfieldname with the name of the custom field.

TAG REFERENCE

397

A

8326AppA.qxd 4/23/07 2:20 PM Page 397

Available values: Any custom field name

Default value: unset

excerpted="[y],[n]"

Restrict to articles with excerpts.

Available values: y (containing an excerpt) or n (not containing an excerpt)

Default value: unset

id=" "

Restrict to specified article. Other attributes, such as status, are still taken into account.

Available values: Any article ID number

Default value: unset

form=" "

See “Common tag attributes” section.

Default value: default

limit=" "

See “Common tag attributes” section.

keywords=" "

Restrict to articles with specified keywords.

Available values: Single keyword or comma-separated list of keywords

Default value: unset

month=" "

Restrict to articles from the specified month.

Available values: Any year and month in the format yyyy-mm

Default value: unset

offset=" "

The number of articles to exclude from the beginning of the list.

Available values: Any number

Default value: 0

section=" "

Restrict to articles within specified section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

398

8326AppA.qxd 4/23/07 2:20 PM Page 398

Available values: Any section name

Default value: unset

sort=" "

See “Common tag attributes” section.

Available values: ID (article ID number), AuthorID (author login name), LastMod
(date and time last modified), LastModID (author of last modification login name),
Posted (date and time created), Title, Category1, Category2, comments_count
(number of publicly visible comments), Status, Section, Body, Excerpt, Keywords,
Image (article image), url_title, and custom_1 through custom_10, ascending
(asc) or descending (desc)

Default value: For search results, score desc (keyword relevancy score); otherwise
Posted desc

status="[draft],[hidden],[pending],[live],[sticky]"

Restrict to articles with specified status.

Default value: live

time="[past],[future],[any]"

Restrict to articles published within specified time frame.

Default value: past

Examples
See Chapters 7, 8, 12, 15, and 16.

<txp:article_id />

Description
Article ID number. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
None.

(Add a full stop.)

Examples
None.

(Add a full stop.)

TAG REFERENCE

399

A

8326AppA.qxd 4/23/07 2:20 PM Page 399

<txp:article_image />

Description
Article image. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

escape="[html]"

See “Common tag attributes” section.

html_id=" "

See “Common tag attributes” section.

thumbnail="[1],[0]"

Whether to display the image’s thumbnail.

Available values: 1 (yes) or 0 (no, display full-sized image)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapter 15.

<txp:author />

Description
Author of the current article. Its context is an article type form. Can also be used within a
page if it is wrapped within an if_individual_article tag.

Attributes
link="[1],[0]"

See “Common tag attributes” section. Links to listing of articles by the author.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

400

8326AppA.qxd 4/23/07 2:20 PM Page 400

section=" "

Used with the link attribute, restricts author request to specified section. This attribute
conflicts with this_section; only one or the other should be used.

Available values: Any section name

Default value: unset (include from all sections)

this_section="[1],[0]"

See “Common tag attributes” section. Used with the link attribute, restricts author
request to the current section. This attribute conflicts with section; only one or the other
should be used.

Examples
See Chapter 15.

<txp:body />

Description
Body, or main content, of the current article. Its context is an article type form. Can also
be used within a page if is wrapped within an if_individual_article tag.

Attributes
None.

Examples
See Chapters 8–10, 12, 15, and 17.

<txp:breadcrumb />

Description
Breadcrumb navigation, either hyperlinked or plain text. Displays any time you are not on
the home page.

Attributes
class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section. Text displayed as the first breadcrumb.

TAG REFERENCE

401

A

8326AppA.qxd 4/23/07 2:20 PM Page 401

Default value: Site name preference

linkclass=" "

(X)HTML class attribute applied to each link.

Available values: Any valid CSS class name

Default value: noline

link="[y],[n]"

See “Common tag attributes” section. Hyperlinks breadcrumbs to sections/categories.

Available values: y (yes) or n (no)

Default value: y

sep=" "

Text to use as the breadcrumb separator.

Default value: » (renders as »)

title="[y],[n]"

Whether to display section/category titles.

Available values: y (yes) or n (no, display names)

Default value: n

wraptag=" "

See “Common tag attributes” section.

Default value: p

Examples
None.

<txp:category />

Description
Currently viewed category.

Attributes
class=" "

See “Common tag attributes” section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

402

8326AppA.qxd 4/23/07 2:20 PM Page 402

Default value: unset

link="[1],[0]"

See “Common tag attributes” section. Links to listing of articles in the category.

name=" "

Override to specified category.

Available values: Any article category name

Default value: unset

section=" "

Used with link attribute, restricts category request to named section. This attribute con-
flicts with this_section; only one or the other can be used.

Available values: Any section name

Default value: unset

this_section=" "

See “Common tag attributes” section. Used with link attribute, restricts category request
to current section. This attribute conflicts with section; only one or the other can be used.

title="[1],[0]"

Whether to display category Title.

Available values: 1 (yes) or 0 (no, display name)

Default value: 0

type="[article],[link],[image],[file]"

Category type.

Default value: article

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 7, 16, and 17.

TAG REFERENCE

403

A

8326AppA.qxd 4/23/07 2:20 PM Page 403

<txp:category_list />

Description
Linked list of categories.

Attributes
active_class=" "

See “Common tag attributes” section.

break=" "

See “Common tag attributes” section.

categories=" "

Restrict to specified category. This attribute conflicts with exclude and parent; only this or
the other(s) can be used.

Available values: Single category name or comma-separated list of category names

Default value: unset

class=" "

See “Common tag attributes” section.

Default value: category_list

exclude=" "

Exclude specified categories. This attribute conflicts with categories; only one or the
other can be used.

Available values: Single category name or comma-separated list of category names

Default value: unset

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

parent=" "

Restrict to categories under specified parent category. This attribute conflicts with
categories; only one or the other should be used.

section=" "

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

404

8326AppA.qxd 4/23/07 2:20 PM Page 404

See “Common tag attributes” section.

this_section="[1],[0]"

See “Common tag attributes” section.

type="[article],[image],[link],[file]"

Default value: article

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:category1 />

Description
Category1 of the current article. Its context is an article type form. Can also be used within
a page if it is wrapped within an if_individual_article tag.

Attributes
class=" "

See “Common tag attributes” section.

link="[1],[0]"

See “Common tag attributes” section. Links to listing of articles in the category.

section=" "

Used with link attribute, links to specified section.

Available values: Any section name

Default value: unset

this_section="[1],[0]"

See “Common tag attributes” section.

title="[1],[0]"

Whether to display category Title.

TAG REFERENCE

405

A

8326AppA.qxd 4/23/07 2:20 PM Page 405

Available values: 1 (yes) or 0 (no, display name)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 8–10 and 15.

<txp:category2 />

Description
Category2 of the current article. Its context is an article type form. Can also be used within
a page if it is wrapped within an if_individual_article tag.

Attributes
class=" "

See “Common tag attributes” section.

link="[1],[0]"

See “Common tag attributes” section. Links to listing of articles in the category.

section=" "

Used with link attribute, links to specified section. This attribute conflicts with
this_section; only one or the other can be used.

Available values: Any existing section name

Default value: unset

this_section="[1],[0]"

See “Common tag attributes” section. Used with link attribute, links to current section.
This attribute conflicts with section; only one or the other can be used.

title="[1],[0]"

Whether to display category Title.

Available values: 1 (yes) or 0 (no, display name)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

406

8326AppA.qxd 4/23/07 2:20 PM Page 406

Examples
None.

<txp:comment_anchor />

Description
Empty comment anchor of current comment. Its context is a comment type form.

Attributes
None.

Examples
None.

<txp:comment_email />

Description
Comment author’s email address (E-mail). Its context is a comment type form.

Attributes
None.

Examples
None.

<txp:comment_email_input />

Description
Comment form email address input field. Its context is a comment type form.

Attributes
None.

Examples
See Chapters 5, 15, and 17.

TAG REFERENCE

407

A

8326AppA.qxd 4/23/07 2:20 PM Page 407

<txp:comment_id />

Description
Comment ID number. Its context is a comment type form.

Attributes
None.

Examples
None.

<txp:comment_message />

Description
Comment Message. Its context is a comment type form.

Attributes
None.

Examples
See Chapters 10 and 15.

<txp:comment_message_input />

Description
Comment form message input field. Its context is a comment type form.

Attributes
None.

Examples
See Chapters 5, 15, and 17.

<txp:comment_name />

Description
Comment author’s Name. Its context is a comment type form.

Attributes
link="[1],[0]"

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

408

8326AppA.qxd 4/23/07 2:20 PM Page 408

Whether the author’s name will be linked to the author’s website (if entered) or the author’s
email address (if entered and Never display e-mail address? preference is set to Yes).

Available values: 1 (yes) or 0 (no)

Default value: 1

Examples
See Chapters 10, 15, and 17.

<txp:comment_name_input />

Description
Comment form name input field. Its context is a comment type form.

Attributes
None.

Examples
See Chapters 5, 10, 15, and 17.

<txp:comment_permlink>

Description
Comment link. Its context is a comment type form.

Attributes
anchor="[1],[0]"

Whether to apply the comment’s ID number to the link as an XHTML id attribute, setting
this link as the comment’s page anchor.

Available values: 1 (yes) or 0 (no)

Default value: If you have not yet used comment_anchor in your form: 1; otherwise: 0

Examples
See Chapter 10, 15, and 17.

TAG REFERENCE

409

A

8326AppA.qxd 4/23/07 2:20 PM Page 409

<txp:comment_preview />

Description
Comment form preview button. Clicking the button displays a preview of the visitor’s com-
ment. Its context is a comment type form.

Attributes
None.

Examples
See Chapters 15 and 17.

<txp:comment_remember />

Description
Comment form checkbox input field. If checked, visitors’ details are remembered by the
system the next time they view a comment form. Checked by default. Its context is a com-
ment type form.

Attributes
None.

Examples
None.

<txp:comment_submit />

Description
Comment form submit button. Not displayed until visitor has previewed the comment.
Clicking the Submit button adds the comment information to the database. Its context is a
comment type form.

Attributes
None.

Examples
See Chapters 15 and 17.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

410

8326AppA.qxd 4/23/07 2:20 PM Page 410

<txp:comment_time />

Description
Comment date/time (Date). Its context is a comment type form.

Attributes
format=" "

Date/time format.

Available values: See “Common date format strings” section

Default value: unset, Comments date format preference is used

gmt="[1],[0]"

See “Common tag attributes” section.

lang=" "

See “Common tag attributes” section.

Examples
See Chapters 10, 15, and 17.

<txp:comment_web />

Description
Comment author’s Website URL, if provided. Its context is a comment type form.

Attributes
None.

Examples
None.

<txp:comment_web_input />

Description
Comment form website URL input field. Its context is a comment type form.

Attributes
None.

TAG REFERENCE

411

A

8326AppA.qxd 4/23/07 2:20 PM Page 411

Examples
See Chapters 5 and 10.

<txp:comments />

Description
One or more comments.

Attributes
break=" "

See “Common tag attributes” section.

Default value: If Present comments as a numbered list? preference is set to Yes: li;
otherwise: div

breakclass=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

Default value: comments

form=" "

See “Common tag attributes” section.

Default value: comments

id=" "

Display comments for specified article; works only on nonindividual article pages.

Available values: Any article ID number

Default value: unset

wraptag=" "

See “Common tag attributes” section.

Default value: If Present comments as a numbered list? preference is set to Yes: ol;
otherwise: unset.

Examples
See Chapters 10, 15, and 17.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

412

8326AppA.qxd 4/23/07 2:20 PM Page 412

<txp:comments_count />

Description
The number of comments associated with the current article. Its context is an article type
form.

Attributes
None.

Examples
See Chapter 15.

<txp:comments_error />

Description
Comment error list. Displays if visitor’s comment does not meet required criteria, listing
the fields that need correction.

Attributes
break=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

wraptag=" "

See “Common tag attributes” section.

Default value: div

Examples
See Chapter 15.

<txp:comments_form />

Description
Comment form.

Attributes
class=" "

TAG REFERENCE

413

A

8326AppA.qxd 4/23/07 2:20 PM Page 413

See “Common tag attributes” section.

form=" "

See “Common tag attributes” section.

Default value: comment_form

id=" "

Override article to add comments to; this attribute works only on nonindividual article
pages.

Available values: Any article ID number

Default value: unset

isize=" "

XHTML size attribute applied to the comment form input fields.

Available values: Any number

Default value: 25

msgcols=" "

XHTML size attribute applied to the comment form message input field.

Available values: Any number

Default value: 25

msg_rows=" "

XHTML rows attribute applied to the comment form message input field.

Available values: Any number

Default value: 5

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 10, 15, and 17.

<txp:comments_help />

Description
Textile help link that includes examples of Textile formatting allowed within comments.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

414

8326AppA.qxd 4/23/07 2:20 PM Page 414

Attributes
None.

Examples
None.

<txp:comments_invite />

Description
Comment invitation link, with link text taken from Invitation contents in the Comments area
of the Write tab. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
class=" "

See “Common tag attributes” section.

showcount="[1],[0]"

Whether to display comment count.

Available values: 1 (yes) or 0 (no)

Default value: 1

showalways="[1],[0]"

Whether to display invite on individual article page.

Available values: 1 (yes) or 0 (no)

Default value: 0

textonly="[1],[0]"

Whether to display invite as plain text instead of a link.

Available values: 1 (yes) or 0 (no, display as a link)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapter 17.

TAG REFERENCE

415

A

8326AppA.qxd 4/23/07 2:20 PM Page 415

<txp:comments_preview />

Description
Visitor comment preview.

Attributes
class=" "

See “Common tag attributes” section.

form=" "

See “Common tag attributes” section.

Default value: comments

id=" "

Override the article to add comments to. This attribute works only when not viewing an
individual article page.

Available values: Any article ID number.

Default value: unset

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 15 and 17.

<txp:custom_field />

Description
Article custom field.

Attributes
escape="[html]"

See “Common tag attributes” section.

default=" "

Text to display when custom field is empty.

Default value: unset

name=" "

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

416

8326AppA.qxd 4/23/07 2:20 PM Page 416

Custom field to display.

Available values: Name of any one of the ten custom fields, as defined in Advanced
Preferences

Default value: First custom field name

Examples
See Chapters 8, 11, 12, and 17.

<txp:css />

Description
Link to one or more Styles (CSS, or Cascading Style Sheets) within a page. (See the “Style”
and “Sections” sections in Chapter 5.)

Attributes
format="[url],[link] "

How to format output.

Available values: url (URL of Style) or link (complete XHTML link with all necessary
attributes)

Default value: url

media=" "

Used with link format, XHTML media attribute value.

Default value: screen

n=" "

Override Style to link to.

Available values: Any Style name

Default value: unset

rel=" "

Used with link format, XHTML rel attribute.

Default value: stylesheet

title=" "

Used with link format, XHTML title attribute.

Default value: unset

TAG REFERENCE

417

A

8326AppA.qxd 4/23/07 2:20 PM Page 417

Examples
See Chapters 5, 11, 14, and 17.

<txp:else />

Description
Used within a conditional tag to define alternative behavior when the condition set in the
conditional tag is not met.

Attributes
None.

Examples
See Chapters 8–10, 12, and 15–17.

<txp:email />

Description
Email hyperlink.

Attributes
email=" "

Email address to link to.

Default value: unset

linktext=" "

Link text.

Default value: Contact

title=" "

Link XHTML title attribute.

Default value: unset

Examples
See Chapter 5.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

418

8326AppA.qxd 4/23/07 2:20 PM Page 418

<txp:error_message />

Description
HTTP error status message.

Attributes
None.

Examples
See Chapters 11 and 17.

<txp:error_status />

Description
HTTP error status code. See “Common HTTP status codes” section.

Attributes
None.

Examples
See Chapters 11 and 17.

<txp:excerpt />

Description
Article Excerpt. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
None.

Examples
See Chapters 8, 9, 11, and 17.

<txp:feed_link />

Description
Link to Atom or Really Simple Syndication (RSS) feed of articles.

TAG REFERENCE

419

A

8326AppA.qxd 4/23/07 2:20 PM Page 419

Attributes
category=" "

Restrict to specified category.

Available values: Any article category name

Default value: Current category

flavor="[rss],[atom]"

Syndication feed format.

Available values: rss (RSS 2.0) or atom (Atom 1.0)

Default value: rss

format="[a],[link]"

Output format.

Available values: a (XHTML a tag, for <body>) or link (XHTML link tag, for <head>)

Default value: a

label=" "

Used with a format, link text.

Default value: unset

limit=" "

See “Common tag attributes” section. Number of recent articles shown in feed.

section=" "

Restrict to specified section.

Available value: Any section name

Default value: Current section

title=" "

XHTML title attribute.

Default value: for “rss” format: RSS Feed; for “atom” format: Atom feed

wraptag=" "

Used with a format. See “Common tag attributes” section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

420

8326AppA.qxd 4/23/07 2:20 PM Page 420

Examples
None.

<txp:file_download />

Description
File download formatted with file type form.

Attributes
filename=" "

Filename of the file to link to. This attribute conflicts with id; only one or the other can be
used.

Available values: Any filename

Default value: unset

form=" "

See “Common tag attributes” section.

Default value: files

id=" "

File download to link to. This attribute conflicts with filename; only one or the other can
be used.

Available values: Any file ID number

Default value: unset

Examples
None.

<txp:file_download_category />

Description
File Category. Its context is a file type form.

Attributes
class=" "

See “Common tag attributes” section.

TAG REFERENCE

421

A

8326AppA.qxd 4/23/07 2:20 PM Page 421

Default value: unset

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:file_download_created />

Description
File creation date and time. Its context is a file type form.

Attributes
format=" "

Date and time format.

Available values: See “Common date format values” section

Default value: Archive date format preference

Examples
None.

<txp:file_download_description />

Description
File Description. Its context is a file type form.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

escape="[html]"

See “Common tag attributes” section.

wraptag=" "

See “Common tag attributes” section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

422

8326AppA.qxd 4/23/07 2:20 PM Page 422

Examples
None.

<txp:file_download_downloads />

Description
The number of times the current file has been downloaded. Its context is a file type form.

Attributes
None.

Examples
None.

<txp:file_download_id />

Description
File ID number. Its context is a file type form.

Attributes
None.

Examples
None.

<txp:file_download_link>

Description
File download link. When used as a single tag file, URL is returned. When used as a con-
tainer tag, links contents to file URL.

Attributes
filename=" "

Filename of the file to link to. This attribute conflicts with id; only one or the other can be
used.

Available values: Any filename

Default value: unset

form=" "

TAG REFERENCE

423

A

8326AppA.qxd 4/23/07 2:20 PM Page 423

See “Common tag attributes” section.

Default value: files

id=" "

File download to link to. This attribute conflicts with filename; only one or the other can
be used.

Available values: Any file ID number

Default value: unset

Examples
See Chapter 5.

<txp:file_download_list />

Description
List of file downloads.

Attributes
break=" "

See “Common tag attributes” section.

category=" "

Restrict to specified category.

Available values: Any file category name

Default value: unset

class=" "

See “Common tag attributes” section.

form=" "

See “Common tag attributes” section.

Default value: files

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

424

8326AppA.qxd 4/23/07 2:20 PM Page 424

limit=" "

See “Common tag attributes” section.

offset=" "

Number of files to exclude, starting from the first in the list.

Available values: Any number

Default value: unset

sort=" "

See “Common tag attributes” section.

Available values: id (file ID number), filename, category, description, downloads
or rand() (random)

Default value: filename asc

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:file_download_modified />

Description
File last modified date and time. Its context is a file type form.

Attributes
format=" "

Date and time format.

Available values: See “Common date format values” section.

Default value: Archive date format preference

Examples
None.

TAG REFERENCE

425

A

8326AppA.qxd 4/23/07 2:20 PM Page 425

<txp:file_download_name />

Description
File name. Its context is a file type form.

Attributes
None.

Examples
See Chapter 5.

<txp:file_download_size />

Description
File size. Its context is a file type form.

Attributes
decimals=" "

Number of decimal places.

Available values: Any number

Default value: 2

format=" "

Filesize format.

Available values: B (bytes), KB (kilobytes/kibibytes), MB (megabytes/mebibytes), GB
(gigabytes/gibibytes), PB (petabytes/pebibytes)

Default value: B

Examples
None.

<txp:if_article_author>

Description
Render contents if current article author matches specified conditions. Its context is an
article type form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

426

8326AppA.qxd 4/23/07 2:20 PM Page 426

Attributes
name=" "

Render contents only if specified author matches author of current article.

Available values: Single user login name or comma-separated list of user login
names

Default value: unset

Examples
None.

<txp:if_article_category>

Description
Render contents if specified category is assigned to the current article. Can also be used
within a page if it is wrapped within an if_individual_article tag.

Attributes
name=" "

Render contents if specified category is assigned to current article.

Available values: Any article category name

Default value: unset

number="[1],[2]"

Render contents if specified category number is assigned to current article. When used
with name attribute, renders contents only if both specified category number and name
are assigned to the current article.

Available values: 1 (Category1) or 2 (Category2)

Default value: unset, matches either number

Examples
See Chapter 15.

<txp:if_article_id>

Description
Render contents if specified article ID number matches the current article ID number. Can
also be used within a page if it is wrapped within an if_individual_article tag.

TAG REFERENCE

427

A

8326AppA.qxd 4/23/07 2:20 PM Page 427

Attributes
id=" "

Article ID number

Available values: Single article ID number or comma-separated list of article ID
numbers

Default value: unset

Examples
None.

<txp:if_article_list>

Description
Render contents if an article list is being displayed.

Attributes
None.

Examples
See Chapters 15–17.

<txp:if_article_section>

Description
Render contents if current article is from within specified section. Its context is an article
type form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

Attributes
name=" "

Available values: Single section name or comma-separated list of section names

Default value: unset

Examples
None.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

428

8326AppA.qxd 4/23/07 2:20 PM Page 428

<txp:if_author>

Description
Render contents if author article listing is being viewed.

Attributes
name=" "

Render contents only if specified author matches author listing being viewed.

Available values: Single user login name or comma-separated list of user login
names

Default value: unset

Examples
None.

<txp:if_category>

Description
Render contents if category article listing is being viewed.

Attributes
name=" "

Render contents only if specified category matches category listing being viewed.

Available values: Single category name or comma-separated category names

Default value: unset

Examples
See Chapter 16.

<txp:if_comments>

Description
Render contents if current article has one or more public comments. Its context is an
article type form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

Attributes
None.

TAG REFERENCE

429

A

8326AppA.qxd 4/23/07 2:20 PM Page 429

Examples
See Chapters 15 and 17.

<txp:if_comments_allowed>

Description
Render contents if commenting is permitted for current article. Its context is an article
type form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

Attributes
id=" "

Override article to check. This attribute works only on nonindividual article pages.

Available values: Any article ID number

Default value: unset

Examples
See Chapters 10 and 15.

<txp:if_comments_disallowed>

Description
Render contents if commenting is not permitted for the current article. Its context is an
article type form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

Attributes
id=" "

Override article to check. This attribute works only on nonindividual article pages.

Available values: Any article ID number

Default value: unset

Examples
See Chapter 10.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

430

8326AppA.qxd 4/23/07 2:20 PM Page 430

<txp:if_comments_error>

Description
Render contents if a comments error condition has been set.

Possible error causes include the following: if the user did not supply all required fields, if
an installed spam protection plugin detects spam, or if the comment form has expired.
Comment forms expire as one of the Txp antispam measures. When that happens, you
simply need to click the Preview button once more.

Attributes
None.

Examples
See Chapter 17.

<txp:if_comments_preview>

Description
Render contents if a visitor is previewing their comment.

Attributes
None.

Examples
See Chapters 15 and 17.

<txp:if_custom_field>

Description
Render contents if specified custom field of the current article has content. Its context is
an article type form. Can also be used within a page if it is wrapped within an if_
individual_article tag.

Attributes
name=" "

Available values: Name of any one of the ten custom fields, as defined in Advanced
Preferences

Default value: First custom field

val=" "

TAG REFERENCE

431

A

8326AppA.qxd 4/23/07 2:20 PM Page 431

Render contents only if custom field contents matches specified value.

Default value: unset

Examples
See Chapters 12 and 17.

<txp:if_different>

Description
Render contents if the value of the contents differs from the preceding value. This is use-
ful for a list in which there is more than one item or in which there might be more items
in the future. On an individual article, the contents would always be rendered because
there is no previous value to compare to. Its context is any type of form.

Attributes
None.

Examples
None.

<txp:if_excerpt>

Description
Render contents if an excerpt exists for the current article. Its context is an article type
form. Can also be used within a page if it is wrapped within an if_individual_article tag.

Attributes
None.

Examples
See Chapter 17.

<txp:if_first_article>

Description
Render contents if the current article is first in the displayed list. This is useful for a list in
which there is more than one item or in which there might be more items in the future.
On an individual article, the contents would always be rendered because there are no
other articles being displayed. Its context is an article type form.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

432

8326AppA.qxd 4/23/07 2:20 PM Page 432

Attributes
None.

Examples
None.

<txp:if_individual_article>

Description
Render contents if an individual article is being displayed.

Attributes
None.

Examples
See Chapters 6, 8–10, and 17.

<txp:if_last_article>

Description
Render contents if the current article is last in the currently displayed list. This is useful for
a list in which there is more than one item or in which there might be more items in the
future. On an individual article, the contents would always be rendered because there are
no other articles being displayed. Its context is an article type of form.

Attributes
None.

Examples
None.

<txp:if_plugin>

Description
Render contents if specified plugin is installed and enabled.

Attributes
name=" "

Plugin to search for.

TAG REFERENCE

433

A

8326AppA.qxd 4/23/07 2:20 PM Page 433

Default value: unset

ver=" "

Restrict to plugins with version numbers equal to or higher than specified.

Default value: unset

Examples
None.

<txp:if_search>

Description
Render contents if current page is a search results listing.

Attributes
None.

Examples
See Chapters 16 and 17.

<txp:if_section>

Description
Render contents if specified section matches current section.

Attributes
name=" "

Section name.

Available values: Single section name or comma-separated list of section names

Default value: unset

Examples
See Chapters 11 and 15.

<txp:if_status>

Description
Render contents if current HTTP status matches specified condition.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

434

8326AppA.qxd 4/23/07 2:20 PM Page 434

Attributes
status="[200],[301],[302],[304],[307],[401],[403],[404],[410],[414],[500],[501],[503]"

HTTP status code number. See “Common HTTP status codes” section.

Default value: 200

Examples
See Chapter 11.

<txp:image />

Description
Full-size image.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

escape="[html]"

See “Common tag attributes” section.

html_id=" "

See “Common tag attributes” section.

id=" "

Image to display. This attribute conflicts with name; only one or the other can be used.

Available values: Any image ID number

Default value: unset

name=" "

Image to display. This attribute conflicts with id; only one or the other can be used.

Available values: Any image name

Default value: unset

wraptag=" "

See “Common tag attributes” section.

TAG REFERENCE

435

A

8326AppA.qxd 4/23/07 2:20 PM Page 435

Examples
See Chapter 7.

<txp:image_display />

Description
Used in tandem with image_index, displays requested full-size image.

Attributes
None.

Examples
None.

<txp:image_index />

Description
Used in tandem with category_list and image_display, displays a linked list of image
thumbnails for requested category.

Attributes
break=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

wraptag=" "

See “Common tag attributes” section.

Examples
None.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

436

8326AppA.qxd 4/23/07 2:20 PM Page 436

<txp:keywords />

Description
Article Keywords. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
None.

Examples
See Chapters 7 and 11.

<txp:lang />

Description
Four-letter code per ISO 639 (language) and ISO 3166 (region) of the Language prefer-
ence.

Attributes
None.

Examples
See Chapter 5.

<txp:link />

Description
Link, as defined in Links tab, using Title as the link text. Its context is a link type form.

Attributes
rel=" "

XHTML rel attribute.

Default value: unset

Examples
None.

TAG REFERENCE

437

A

8326AppA.qxd 4/23/07 2:20 PM Page 437

<txp:link_category />

Description
Link Category.

Attributes
class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

title="[1],[0]"

Whether to display category Title.

Available values: 1 (yes) or 0 (no, display category name)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:link_date />

Description
Link Date.

Attributes
format=" "

Date format.

Available values: See “Common date format values” section.

Default value: Date format preference

gmt="[1],[0]"

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

438

8326AppA.qxd 4/23/07 2:20 PM Page 438

See “Common tag attributes” section.

lang=" "

See “Common tag attributes” section.

Examples
None.

<txp:link_description />

Description
Link Description. Its context is a link type form.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

escape="[html]"

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:link_feed_link />

Description
Link to Atom or RSS syndication feed of links.

TAG REFERENCE

439

A

8326AppA.qxd 4/23/07 2:20 PM Page 439

Attributes
category=" "

Restrict to specified category.

Available values: Any article category name

Default value: Current category

flavor="[rss],[atom]"

Syndication feed format.

Available values: rss (RSS 2.0) or atom (Atom 1.0)

Default value: rss

format="[a],[link]"

Output format.

Available values: a (XHTML a tag, for <body>) or link (XHTML link tag, for <head>)

Default value: a

label=" "

Used with a format, link text.

Available values: Any text

Default value: unset

title=" "

XHTML title attribute.

Available values: Any text

Default value: for “rss” format: RSS Feed; for “atom” format: Atom feed

wraptag=" "

Used with “a” format. See “Common tag attributes” section.

Examples
None.

<txp:link_name />

Description
Link Title.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

440

8326AppA.qxd 4/23/07 2:20 PM Page 440

Attributes
escape="[html]"

See “Common tag attributes” section.

Examples
None.

<txp:link_to_home>

Description
Link to the site’s home page. When used as a single tag, returns URL (same as site_url).
When used as a container tag, contents are linked.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

Examples
See Chapter 17.

<txp:link_to_next>

Description
Next article link. When used as a single tag, returns URL. When used as a container tag,
contents are linked.

Attributes
showalways="[1],[0]"

Show container contents when no next article exists.

Available values: 1 (yes) or 0 (no)

Default value: 0

Examples
None.

TAG REFERENCE

441

A

8326AppA.qxd 4/23/07 2:20 PM Page 441

<txp:link_to_prev>

Description
Previous article link. When used as a single tag, returns URL. When used as a container tag,
contents are linked.

Attributes
showalways="[1],[0]"

Show container contents when no previous article exists.

Available values: 1 (yes) or 0 (no)

Default value: 0

Examples
None.

<txp:link_url />

Description
Link URL.

Attributes
None.

Examples
None.

<txp:linkdesctitle />

Description
Link, as defined in the Links tab, using Title as the link text and Description as the XHTML
title attribute. Its context is a link type form.

Attributes
rel=" "

XHTML rel attribute.

Default value: unset

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

442

8326AppA.qxd 4/23/07 2:20 PM Page 442

Examples
See Chapters 7 and 15.

<txp:linklist />

Description
List of links.

Attributes
break=" "

See “Common tag attributes” section.

Default value: unset

category=" "

Restrict to category.

Available values: Any link category name

Default value: unset

class=" "

See “Common tag attributes” section.

form=" "

See “Common tag attributes” section.

Default value: plainlinks

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

limit=" "

See “Common tag attributes” section.

Default value: unset

sort=" "

See “Common tag attributes” section.

TAG REFERENCE

443

A

8326AppA.qxd 4/23/07 2:20 PM Page 443

Available values: id (link ID number), linkname, url, category, description, date,
linksort (Sort Value), or rand() (random)

Default value: linksort asc

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 7 and 15.

<txp:meta_keywords />

Description
Individual article Keywords as XHTML Keyword META element (used in <head>).

Attributes
None.

Examples
See Chapter 7.

<txp:meta_author />

Description
Individual article author as XHTML Author META element (used in <head>).

Attributes
None.

Examples
None.

<txp:newer>

Description
Used in tandem with article (does not work with article_custom), links to the next page
in the list of articles. When used as a single tag, returns URL. When used as a container tag,
contents are linked.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

444

8326AppA.qxd 4/23/07 2:20 PM Page 444

Attributes
showalways="[1],[0]"

Whether to render contents, even when no newer page exists.

Available values: 1 (yes) or 0 (no)

Default value: 0

Examples
See Chapter 15.

<txp:next_title />

Description
Next article’s title.

Attributes
None.

Examples
None.

<txp:older>

Description
Used in tandem with article (does not work with article_custom), links to the previous
page in the list of articles. When used as a single tag, returns URL. When used as a con-
tainer tag, contents are linked.

Attributes
showalways="[1],[0]"

Whether to render contents, even when no newer page exists.

Available values: 1 (yes) or 0 (no)

Default value: 0

Examples
See Chapter 15.

TAG REFERENCE

445

A

8326AppA.qxd 4/23/07 2:20 PM Page 445

<txp:output_form />

Description
Render misc type form contents. Can be used to easily use and manage often reused por-
tions of text, Textpattern tags, XHTML tags, or combinations of each.

Attributes
form=" "

Form to render.

Available values: Any misc type form name

Default value: unset

Examples
See Chapters 8, 9, 11, and 15–17.

<txp:page_title />

Description
Page title. Output depends upon the context in which it is being used. Results appear as
follows:

Context Output

Front page Site name

Page two or more Site name separator Page number

Section listing Site name separator Section Title

Category listing Site name separator Category Title

Search results Site name separator Search results for: search term

Individual article Site name separator Article Title

Popup comments Site name separator Comments on: Article Title

Attributes
separator=" "

Text to use as a separator between items.

Default value: :

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

446

8326AppA.qxd 4/23/07 2:20 PM Page 446

Examples
See Chapters 11, 14, 15, and 17.

<txp:page_url />

Description
Current page URL.

Attributes
type=" "

The component of the current URL to display.

Available values: id (current article ID request), s (current section request), c (cur-
rent category request), q (search query terms), pg (current page number request),
month (current month request), author (current author request), request_uri
(URL path, relative to domain), status (HTTP status code number, see “Common
HTTP status codes” section)

Default value: request_uri

Examples
None.

<txp:password_protect />

Description
Prompt visitor for username and password. If response does not match, terminate render
of page, and display error page with message Authorization required.

This tag works only for websites on an Apache web server, running PHP as a module (does
not work when running PHP as CGI or on non-Apache servers.

Attributes
login=" "

Username

Default value: unset

pass=" "

Password

Default value: unset

TAG REFERENCE

447

A

8326AppA.qxd 4/23/07 2:20 PM Page 447

Examples
None.

<txp:permlink>

Description
Article link. When used as a single tag, URL is returned. When used as a container tag, con-
tent is linked.

Its context is an article type form. Can also be used within a page if it is wrapped within an
if_individual_article tag.

Attributes
id=" "

Override link to specific article. When this attribute is used, the tag can be used anywhere
(article, page, form, and so on).

Available values: Any article ID number

Default value: unset

Examples
See Chapters 5, 7–9, 15, and 17.

<txp:php>

Description
Run custom PHP code. Enter code without starting (<?php) and ending (?>) PHP tags, using
this tag as a container instead.

For example, in a regular PHP script, you can write this:

<?php echo 'Hello world!'; ?>

To do the same in Textpattern, enter this:

<txp:php>echo 'Hello world!';</txp:php>

This feature can be switched on and off in Advanced Preferences.

Attributes
None.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

448

8326AppA.qxd 4/23/07 2:20 PM Page 448

Examples
See Chapter 15.

<txp:popup />

Description
Pop-up or drop-down menus for browsing by section or category.

Attributes
label=" "

See “Common tag attributes” section.

Default value: Browse

section=" "

Used with c type, jump to the selected category for the specified section. This attribute
conflicts with this_section; only one or the other can be used.

this_section="[1],[0]"

Used with c type, jump to the selected category for the current section. This attribute con-
flicts with section; only one or the other can be used.

Available values: 1 (yes) or 0 (no)

Default value: 0

type="[s],[c]"

Type of list to output.

Available values: s (sections) or c (categories)

Default value: c

wraptag=" "

See “Common tag attributes” section.

Examples
None.

TAG REFERENCE

449

A

8326AppA.qxd 4/23/07 2:20 PM Page 449

<txp:posted />

Description
Article creation date and time (Timestamp). Its context is an article type form. Can also be
used within a page if it is wrapped within an if_individual_article tag.

Attributes
format=" "

Date format.

Available values: See “Common date format values” section

Default value: If individual article, category, or page listing: Archive date format pref-
erence; otherwise: Date format preference

gmt="[1],[0]"

See “Common tag attributes” section.

lang=" "

See “Common tag attributes” section.

Examples
See Chapters 7–10 and 15.

<txp:prev_title />

Description
Previous article title.

Attributes
None.

Examples
None.

<txp:recent_articles />

Description
List of links to recently published articles.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

450

8326AppA.qxd 4/23/07 2:20 PM Page 450

Attributes
break=" "

See “Common tag attributes” section.

category=" "

Restrict to specified category.

Available values: Any article category name

Default value: unset

class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

Default value: Recent Articles

labeltag=" "

See “Common tag attributes” section.

limit=" "

See “Common tag attributes” section.

section=" "

Restrict to specified section.

Available values: Any section name

Default value: unset

sort=" "

See “Common tag attributes” section.

Available values: ID (article ID number), AuthorID (author login name), LastMod
(date and time last modified), LastModID (author of last modification login name),
Posted (date and time created), Title, Category1, Category2, comments_count
(number of publicly visible comments), Status, Section, Body, Excerpt, Keywords,
Image (article image), url_title, and custom_1 through custom_10, ascending
(asc) or descending (desc)

Default value: Posted desc

wraptag=" "

See “Common tag attributes” section.

TAG REFERENCE

451

A

8326AppA.qxd 4/23/07 2:20 PM Page 451

Examples
None.

<txp:recent_comments />

Description
List of recent comments.

Attributes
break=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

limit=" "

See “Common tag attributes” section.

sort=" "

See “Common tag attributes” section.

Available values: discussid (comment ID number), parentid (parent article ID
number), name (comment author name), email (comment author email), web (com-
ment author website), ip (comment author IP address), posted (comment creation
date and time), message

Default value: posted desc

wraptag=" "

See “Common tag attributes” section.

Examples
None.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

452

8326AppA.qxd 4/23/07 2:20 PM Page 452

<txp:related_articles />

Description
List of links to articles related (matching specified categories) to current article. Its context
is an article form. Can also be used within a page if it is wrapped within an if_individual_
article tag.

Attributes
break=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

limit=" "

See “Common tag attributes” section.

match="[Category1],[Category2],[Category1,Category2]"

Which of the current article’s categories to match.

Default value: Category1, Category2

section=" "

Restrict to specified section.

Available values: Any section name

Default value: unset

sort=" "

See “Common tag attributes” section.

TAG REFERENCE

453

A

8326AppA.qxd 4/23/07 2:20 PM Page 453

Available values: ID (article ID number), AuthorID (author login name), LastMod
(date and time last modified), LastModID (author of last modification login name),
Posted (date and time created), Title, Category1, Category2, comments_count
(number of publicly visible comments), Status, Section, Body, Excerpt, Keywords,
Image (article image), url_title, and custom_1 through custom_10, ascending
(asc) or descending (desc)

Default value: posted desc

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:search_input />

Description
Article search form.

Attributes
button=" "

Creates and labels a form submit button.

Available values: Any text

Default value: unset, no button is created

form=" "

See “Common tag attributes” section.

Default value: search_input

label=" "

See “Common tag attributes” section.

Default value: search

section=" "

Use the specified section as the destination page that will display the search results.

Available values: Any section name

Default value: unset, front page is used

size=" "

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

454

8326AppA.qxd 4/23/07 2:20 PM Page 454

button XHTML size attribute

Available values: Any number

Default value: 15

wraptag=" "

See “Common tag attributes” section.

Default value: p

Examples
See Chapter 11.

<txp:search_result_count />

Description
Number of search results found.

Attributes
text=" "

Inline text to label count.

Default value: For one article: article found; otherwise: articles found

Examples
See Chapter 15.

<txp:search_result_date />

Description
Search result article creation date and time (Timestamp). Its context is an article type form.

Attributes
format=" "

Date format

Available values: See “Common date format values” section

Default value: If viewing first page of search results, Date format preference; other-
wise, Archive date format preference

Examples
See Chapter 11.

TAG REFERENCE

455

A

8326AppA.qxd 4/23/07 2:20 PM Page 455

<txp:search_result_excerpt />

Description
Highlighted occurrences of the search term with some surrounding context. Its context is
an article type form.

Attributes
hilight=" "

XHTML tag (without brackets) to be used to highlight search terms.

Default value: strong

limit=" "

Maximum number of occurrences to highlight.

Available values: Any number

Default value: 5

Examples
See Chapters 11, 15, and 17.

<txp:search_result_title />

Description
Linked title of article search result. Its context is an article type form.

Attributes
None.

Examples
See Chapters 11 and 17.

<txp:search_result_url />

Description
Linked URL of article search result. Its context is an article type form.

Attributes
None.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

456

8326AppA.qxd 4/23/07 2:20 PM Page 456

Examples
See Chapter 11.

<txp:section />

Description
Currently viewed section. When used in an article form or on an individual article page,
returns article section (same as article_section).

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

link="[1],[0]"

See “Common tag attributes” section. Links to listing of articles in the section.

name=" "

Override to specified section.

Available values: Any section name

Default value: unset

title="[1],[0]"

Whether to display section Title.

Available values: 1 (yes) or 0 (no, display section name)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
See Chapters 8 and 15.

<txp:section_list />

Description
Linked section list.

TAG REFERENCE

457

A

8326AppA.qxd 4/23/07 2:20 PM Page 457

Attributes
active_class=" "

See “Common tag attributes” section.

break=" "

See “Common tag attributes” section.

class=" "

See “Common tag attributes” section.

default_title=""

Used with include_default, text used for the default section (front page).

Available values: Any text

Default value: Site name preference

exclude=" "

Exclude specified sections. This attribute conflicts with include_sections; only one or the
other can be used.

Available values: Single section name or comma-separated list of section names

Default value: unset

include_default="[1],[0]"

Whether to include default section (front page) in list.

Available values: 1 (yes) or 0 (no)

Default value: 0

label=" "

See “Common tag attributes” section.

labeltag=" "

See “Common tag attributes” section.

sections=" "

Restrict to specified sections. Also determines the list’s sort order. This attribute conflicts
with exclude; only one or the other can be used.

Available values: Single section name or comma-separated list of section names

Default value: unset

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

458

8326AppA.qxd 4/23/07 2:20 PM Page 458

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:sitename />

Description
Site name preference.

Attributes
None.

Examples
See Chapters 15 and 17.

<txp:site_slogan />

Description
Site slogan preference.

Attributes
None.

Examples
See Chapter 17.

<txp:site_url />

Description
Site URL preference.

Attributes
None.

Examples
See Chapter 17.

TAG REFERENCE

459

A

8326AppA.qxd 4/23/07 2:20 PM Page 459

<txp:text />

Description
Predefined text according to Language preference. Examples of this tag can be seen in the
default pages and forms distributed with Textpattern.

Attributes
item=" "

Language string.

Available values: Too many to list here

Default value: unset

Examples
See Chapter 17.

<txp:thumbnail />

Description
Image thumbnail.

Attributes
class=" "

See “Common tag attributes” section.

Default value: unset

escape="[html]"

See “Common tag attributes” section.

html_id=" "

See “Common tag attributes” section.

id=" "

Image to display. This attribute conflicts with name; only one or the other can be used.

Available values: Any image ID number

Default value: unset

name=" "

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

460

8326AppA.qxd 4/23/07 2:20 PM Page 460

Image to display. This attribute conflicts with id; only one or the other can be used.

Available values: Any image name

Default value: unset

poplink="[1],[0]"

Whether to link to pop-up window containing full-size image.

Available values: 1 (yes) or 0 (no)

Default value: 0

wraptag=" "

See “Common tag attributes” section.

Examples
None.

<txp:title />

Description
Article title. Its context is an article type form. Can also be used within a page if it is
wrapped within an if_individual_article tag.

Attributes
no_widow="[1],[0]"

Inhibit line breaks that would leave a single word (widow) on the last line.

Available values: 1 (yes) or 0 (no)

Default value: Prevent widowed words in article titles? preference

Examples
See Chapters 5, 7–10, 12, 15, and 17.

<txp:txp_die />

Description
Terminate normal page rendition, display an error page, and return the specified status to
the user agent (browser, search engine crawler, feed aggregator).

Attributes
msg=" "

TAG REFERENCE

461

A

8326AppA.qxd 4/23/07 2:20 PM Page 461

Error message.

Default value: unset

status="[200],[301],[302],[304],[307],[401],[403],[404],[410],[414],[500],[501],[503]"

HTTP status code number.

Available values: See “Common HTTP status codes” section.

Default value: 503

Examples
None.

Common tag attributes

Here is a list of several attributes, supported by a large number of Textpattern tags, which
always carry the same meaning.

active_class

XHTML class attribute applied to the “active” or current link in a list.

Available values: Any valid CSS class name

Default value: unset

break

XHTML tag (without brackets) or string used to separate list items. Suggested values
include br and hr for presentational markup, or li if semantic markup is preferred.
Textpattern cares for the correct nesting of tags in either case.

Available values: Any XHTML tag name

Default value: br, unless otherwise stated

breakclass

XHTML class attribute to be applied to break (when value supplied is a tag).

Available values: Any CSS class name

Default value: unset

class

XHTML class attribute to be applied to the specified wraptag. Images will have the class
applied to the image itself if no wraptag is specified.

Available values: Any CSS class name

Default value: Textpattern tag name (without brackets)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

462

8326AppA.qxd 4/23/07 2:20 PM Page 462

escape

Whether to escape XHTML entities within output.

Available values: html (convert < and > into their named entity equivalents)

Default value: unset

form

Form used to format content for display.

Available values: Any existing form of the relevant type (for example, for articles an
article type form)

gmt

Whether to output date/time according to Greenwich Mean Time.

Available values: 1 (yes) or 0 (no)

Default value: 0

html_id

XHTML id attribute to be applied to the wraptag. Images will have the class applied to the
image itself if no wraptag is specified.

Available values: Any XHTML id attribute name

Default value: unset

label

This string will be prepended to the output. When using a wraptag value of either ol or ul,
label will be the first list item.

Available values: Any desired text

Default value: unset, unless otherwise stated

labeltag

XHTML tag (without brackets) to wrap around label.

Available values: Any valid XHTML tag name

Default value: unset

lang

The language (locale) to use to output date/time.

Available values: Four-letter code of the language [ISO 639 (language) and ISO
3166 (region)]

Default value: Locale for the Language preference

TAG REFERENCE

463

A

8326AppA.qxd 4/23/07 2:20 PM Page 463

limit

The number of items of data (articles, search term occurrences, links, and so on) to
display.

Available values: Any positive number

Default value: 10, unless otherwise stated

link

Whether to link the output to the relevant URL.

Available values: 1 (yes) or 0 (no), unless otherwise stated

Default value: 0 (no), unless otherwise stated

sort

How the resulting list of data (articles, links, and so on) should be sorted before being dis-
played. Available values include any comma-separated combination of column field names
from that content’s database table, ascending (first to last, the default) or descending (last
to first).

this_section

Whether to link the output to the current section.

Available values: 1 (yes) or 0 (no)

Default value: 0 (no)

wraptag

XHTML tag (without brackets) to wrap around output. Suggested values can include p, ol,
or ul.

Available values: Any XHTML tag name

Default value: unset, unless otherwise stated

Common date format values

Here is a list of the most commonly used date format values. You can see the other
options listed in the PHP manual: http://php.net/strftime.

Value Output

since Textpattern-specific format, outputs the time elapsed since published
date/time

%d day of the month (range: 01–31)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

464

8326AppA.qxd 4/23/07 2:20 PM Page 464

Value Output

%A weekday name

%a weekday name abbreviated

%m month (range: 01–12)

%B month name

%b month name abbreviated

%y year without the century (range: 00–99)

%Y year including the century (range: 0000–9999)

%H hour using a 24-hour clock (range: 00–23)

%I hour using a 12-hour clock (range: 01–12)

%M minute

%S second

%p either am or pm

%% a literal % character

Common HTTP status codes

Here is a list of some common HTTP status codes.

Number Message

201 OK

301 Moved Permanently

302 Found

304 Not Modified

307 Temporary Redirect

401 Unauthorized

403 Forbidden

Continued

TAG REFERENCE

465

A

8326AppA.qxd 4/23/07 2:20 PM Page 465

Number Message

404 Not Found

410 Gone

414 Request-URI Too Long

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

See the other options in the HTTP Status Code Registry: www.iana.org/assignments/
http-status-codes.

Index

article pg. 394

article_custom pg. 397

article_id pg. 399

article_image pg. 399

author pg. 400

body pg. 400

breadcrumb pg. 401

category pg. 402

category_list pg. 404

category1 pg. 405

category2 pg. 406

comment_anchor pg. 407

comment_email pg. 407

comment_email_input pg. 407

comment_id pg. 408

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

466

8326AppA.qxd 4/23/07 2:20 PM Page 466

comment_message pg. 408

comment_message_input pg. 408

comment_name pg. 408

comment_name_input pg. 409

comment_permlink pg. 409

comment_preview pg. 410

comment_remember pg. 410

comment_submit pg. 410

comment_time pg. 411

comment_web pg. 411

comment_web_input pg. 411

comments pg. 412

comments_count pg. 413

comments_error pg. 413

comments_form pg. 413

comments_help pg. 414

comments_invite pg. 415

comments_preview pg. 416

custom_field pg. 416

css pg. 417

else pg. 418

email pg. 418

error_message pg. 419

error_status pg. 419

excerpt pg. 419

feed_link pg. 419

TAG REFERENCE

467

A

8326AppA.qxd 4/23/07 2:20 PM Page 467

file_download pg. 421

file_download_category pg. 421

file_download_created pg. 422

file_download_description pg. 422

file_download_downloads pg. 423

file_download_id pg. 423

file_download_link pg. 423

file_download_list pg. 424

file_download_modified pg. 425

file_download_name pg. 426

file_download_size pg. 426

if_article_author pg. 426

if_article_category pg. 427

if_article_id pg. 427

if_article_list pg. 428

if_article_section pg. 428

if_author pg. 429

if_category pg. 429

if_comments pg. 429

if_comments_allowed pg. 430

if_comments_disallowed pg. 430

if_comments_error pg. 431

if_comments_preview pg. 431

if_custom_field pg. 431

if_different pg. 432

if_excerpt pg. 432

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

468

8326AppA.qxd 4/23/07 2:20 PM Page 468

if_first_article pg. 432

if_individual_article pg. 433

if_last_article pg. 433

if_plugin pg. 433

if_search pg. 434

if_section pg. 434

if_status pg. 434

image pg. 435

image_display pg. 436

image_index pg. 436

keywords pg. 437

lang pg. 437

link pg. 437

link_category pg. 438

link_date pg. 438

link_description pg. 439

link_feed_link pg. 439

link_name pg. 440

link_to_home pg. 441

link_to_next pg. 441

link_to_prev pg. 442

link_url pg. 442

linkdesctitle pg. 442

linklist pg. 443

meta_keywords pg. 444

meta_author pg. 444

TAG REFERENCE

469

A

8326AppA.qxd 4/23/07 2:20 PM Page 469

newer pg. 444

next_title pg. 444

older pg. 445

output_form pg. 445

page_title pg. 446

page_url pg. 447

password_protect pg. 447

permlink pg. 448

php pg. 448

popup pg. 449

posted pg. 450

prev_title pg. 450

recent_articles pg. 450

recent_comments pg. 452

related_articles pg. 453

search_input pg. 454

search_result_count pg. 455

search_result_date pg. 455

search_result_excerpt pg. 456

search_result_title pg. 456

search_result_url pg. 456

section pg. 457

section_list pg. 457

sitename pg. 459

site_slogan pg. 459

site_url pg. 459

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

470

8326AppA.qxd 4/23/07 2:20 PM Page 470

text pg. 460

thumbnail pg. 460

title pg. 461

txp_die pg. 461

Common tag attributes pg. 462

Common date format values pg. 464

Common HTTP status codes pg. 465

TAG REFERENCE

471

A

8326AppA.qxd 4/23/07 2:20 PM Page 471

8326AppB.qxd 4/18/07 1:24 PM Page 472

B PLUGIN DEVELOPER RESOURCES

8326AppB.qxd 4/18/07 1:24 PM Page 473

This appendix contains a detailed listing of commonly used helper functions from the
Textpattern source and the global variables that you have access to when writing plugins.
While you can dig through all of the Textpattern source code to locate every function and
variable, this reference contains those that are most commonly used.

Helper functions
When writing plugins, all the libraries in the Textpattern core are at your disposal. The
libraries contain a wide range of functions that can be reused to save time when writing
your own plugin code. The following sections highlight some of the most helpful functions
that you’ll find in the scripts within the /textpattern/lib/ directory.

txplib_db.php

The txplib_db.php file contains functions that help you interact with the Textpattern
database. All the functions are “safe” because they automatically attach a table prefix to
the table name if necessary.

safe_query() executes a SQL query

safe_delete() executes a SQL DELETE query

safe_update() executes a SQL UPDATE query

safe_insert() executes a SQL INSERT query

safe_upsert() attempts to execute a SQL UPDATE query; if it fails, a SQL INSERT
query is executed

safe_field() retrieves the value of a single field in a table

safe_column() retrieves an array of values from a single column in a table

safe_row() retrieves a single row from a table

safe_rows() retrieves an array of rows from a table

safe_count() retrieves a count of the number of rows in a table

txplib_forms.php

The txplib_forms.php file contains functions that help you build HTML forms and form
elements.

yesnoRadio() creates yes/no radio button input elements

onoffRadio() creates on/off radio button input elements

selectInput() creates a select list

fInput() creates a form input element

hInput() creates a hidden form input element

sInput() creates a hidden step input element for the admin interface

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

474

8326AppB.qxd 4/18/07 1:24 PM Page 474

eInput() creates a hidden event input element for the admin interface

checkbox() creates a checkbox input element

form() creates a form

text_area() creates a textarea

txplib_html.php

The txplib_html.php file contains functions that help you build HTML code. The func-
tions in this file can be used so that you don’t have to embed HTML in your plugin code.

startTable() creates an opening table tag

endTable() creates a closing table tag

tr() creates a table row

hcell() creates a table header cell

td() creates a table cell

assRow() creates a table row from an array of data

assHead() creates a table header row from an array of data

tag() creates an HTML tag of your choice

graf() wraps text in <p> tags

hed() creates a heading element

href() creates a hyperlink

sLink() creates a step link for the admin interface

strong() wraps text in tags

htmlPre() wraps text in <pre> and <code> tags

comment() wraps text in an HTML comment

dom_attach() creates a new element and attaches it to the DOM

script_js() wraps JavaScript code in <script> tags

txplib_misc.php

The txplib_misc.php file contains a variety of miscellaneous helper functions.

gTxt() returns a translated string from the language file

dmp() dumps variables to the screen

gps() checks for GET and POST variables

gpsa() checks for GET and POST variables in an array

ps() checks for a POST variable

psa() checks for a POST variable in an array

cs() checks for a COOKIE variable

PLUGIN DEVELOPER RESOURCES

475

B

8326AppB.qxd 4/18/07 1:24 PM Page 475

load_plugin() loads a plugin from the database or plugin cache directory

require_plugin() attempts to load a plugin and returns an error if not found

include_plugin() attempts to load a plugin and returns a warning if not found

register_callback() registers a callback function

register_tab() registers a new tab in the admin interface

lAtts() confirms that attributes passed to a function are valid

is_valid_email() checks a string for a valid email address

safe_strftime() formats time and respects the locale set in Textpattern

EvalElse() is used for conditional tags to display appropriate output based on a
condition

fetch_form() retrieves a form from the database

fetch_category_title() retrieves a category name’s title

fetch_section_title() retrieves a section name’s title

get_lastmod() retrieves the date an article on a site was last modified

set_pref() inserts or updates a preference in the database

Global variables
As Textpattern pages and forms are parsed to render your completed web page, you can
access a wealth of global variables in your plugin code. The following are lists of global
variable names and descriptions.

$prefs

The $prefs array contains general values for site-wide settings, as shown in Table B-1.
Most of the preferences contained in the array can be set within the Admin ä Preferences
tab. Their specific location in the admin interface is noted in Table B-1. You can refer to
Chapter 3 for details on those preferences. Preferences that cannot be changed in the
admin interface are also listed. This array is available on all pages.

You can dump all global variables to the screen in a sorted list by using the following code
on any Textpattern page:

<txp:php>
global $prefs;
ksort($prefs);
dmp($prefs);
</txp:php>

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

476

8326AppB.qxd 4/18/07 1:24 PM Page 476

Table B-1. Site preferences global variable names and corresponding locations in the admin inter-
face

Variable Name Preference Location

$prefs['admin_side_plugins'] Advanced—Publish—Use admin side
plugins?

$prefs['allow_article_php_scripting'] Advanced—Publish—Allow PHP in
articles?

$prefs['allow_form_override'] Advanced—Publish—Allow form
override?

$prefs['allow_page_php_scripting'] Advanced—Publish—Allow PHP in
pages?

$prefs['allow_raw_php_scripting'] Advanced—Publish—Allow raw php?

$prefs['archive_dateformat'] Basic—Publish—Archive date format

$prefs['article_list_pageby'] Content ä Articles

$prefs['articles_use_excerpts'] Advanced—Publish—Articles use
excerpts?

$prefs['attach_titles_to_permalinks'] Advanced—Publish—Attach titles to
permalinks?

$prefs['blog_mail_uid'] Set by Textpattern; first admin user’s
email address used if the use_mail_
on_feeds_id preference is true

$prefs['blog_time_uid'] Set by Textpattern; year used to create
the blog_uid

$prefs['blog_uid'] Set by Textpattern; a unique ID for
the site

$prefs['comment_list_pageby'] Content ä Comments

$prefs['comment_means_site_updated'] Advanced—Publish—New comment
means site updated?

$prefs['comment_nofollow'] Advanced—Publish—Apply rel="nofollow"
to commenters’ website URL?

$prefs['comments_are_ol'] Basic—Comments—Present comments
as a numbered list?

$prefs['comments_auto_append'] Basic—Comments—On by default?

Continued

PLUGIN DEVELOPER RESOURCES

477

B

8326AppB.qxd 4/18/07 1:24 PM Page 477

Table B-1. Site preferences global variable names and corresponding locations in the admin inter-
face (Continued)

Variable Name Preference Location

$prefs['comments_dateformat'] Basic—Comments—Comments date
format

$prefs['comments_default_invite'] Basic—Comments—Default invite

$prefs['comments_disabled_after'] Basic—Comments—Disabled after
(never, 1 week, 2 weeks, 3 weeks,
4 weeks, 5 weeks, or 6 weeks)

$prefs['comments_disallow_images'] Basic—Comments—Disallow user
images?

$prefs['comments_mode'] Basic—Comments—Comments mode
(nopopup or popup)

$prefs['comments_moderate'] Basic—Comments—Moderate
comments?

$prefs['comments_on_default'] Basic—Comments—On by default?

$prefs['comments_require_email'] Advanced—Comments—Require user’s
e-mail address?

$prefs['comments_require_name'] Advanced—Comments—Require user’s
name?

$prefs['comments_sendmail'] Basic—Comments—Mail comments to
author?

$prefs['custom_1_set'] Advanced—Custom Fields—Custom field
1 name

$prefs['custom_10_set'] Advanced—Custom Fields—Custom field
10 name

$prefs['custom_2_set'] Advanced—Custom Fields—Custom field
2 name

$prefs['custom_3_set'] Advanced—Custom Fields—Custom field
3 name

$prefs['custom_4_set'] Advanced—Custom Fields—Custom field
4 name

$prefs['custom_5_set'] Advanced—Custom Fields—Custom field
5 name

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

478

8326AppB.qxd 4/18/07 1:24 PM Page 478

Variable Name Preference Location

$prefs['custom_6_set'] Advanced—Custom Fields—Custom field
6 name

$prefs['custom_7_set'] Advanced—Custom Fields—Custom field
7 name

$prefs['custom_8_set'] Advanced—Custom Fields—Custom field
8 name

$prefs['custom_9_set'] Advanced—Custom Fields—Custom field
9 name

$prefs['dateformat'] Basic—Publish—Date format

$prefs['dbupdatetime'] Set by Textpattern; the date the
database was last updated

$prefs['edit_raw_css_by_default'] Advanced—Style—Use raw editing mode
by default?

$prefs['expire_logs_after'] Advanced—Publish—Logs expire after
how many days?

$prefs['file_base_path'] Advanced—Admin—File directory path

$prefs['file_list_pageby'] Content ä Files

$prefs['file_max_upload_size'] Advanced—Admin—Max Upload File Size
(in bytes)

$prefs['gmtoffset'] Basic—Publish—Time Zone

$prefs['image_list_pageby'] Content ä Images

$prefs['img_dir'] Advanced—Admin—Image directory

$prefs['include_email_atom'] Advanced—Publish—Include e-mail in
Atom feeds?

$prefs['is_dst'] Basic—Publish—DST enabled?

$prefs['language'] Language—Currently active language

$prefs['lastmod'] Set by Textpattern; the date your site
was last changed

$prefs['link_list_pageby'] Content ä Links

Continued

PLUGIN DEVELOPER RESOURCES

479

B

8326AppB.qxd 4/18/07 1:24 PM Page 479

Table B-1. Site preferences global variable names and corresponding locations in the admin inter-
face (Continued)

Variable Name Preference Location

$prefs['locale'] Language—Currently active language

$prefs['log_list_pageby'] Admin ä Visitor Logs

$prefs['logging'] Basic—Publish—Logging

$prefs['max_url_len'] Advanced—Publish—Use e-mail address
to construct feed ids? (Default is site URL)

$prefs['never_display_email'] Advanced—Publish—Never display e-mail
address?

$prefs['override_emailcharset'] Advanced—Admin—Use ISO-8859-1
encoding in e-mails sent? (Default is
UTF-8)

$prefs['path_from_root'] Deprecated

$prefs['path_to_site'] From config.php; the absolute path to
the site on the web server

$prefs['permalink_title_format'] Advanced—Publish—Permalink title-like-
this? (Default is TitleLikeThis)

$prefs['permlink_mode'] Basic—Publish—Permanent link mode

$prefs['ping_textpattern_com'] Advanced—Publish—Ping
textpattern.com?

$prefs['ping_weblogsdotcom'] Advanced—Publish—Ping ping-o-
matic.com?

$prefs['plugin_cache_dir'] Advanced—Admin—Plugin cache
directory path

$prefs[prefs_id] Cannot be changed; no known use

$prefs['production_status'] Basic—Publish—Production Status

$prefs['rss_how_many'] Advanced—Admin—How many articles
should be included in feeds?

$prefs['send_lastmod'] Advanced—Admin—Send Last-Modified
header

$prefs['show_article_category_count'] No longer used; remains for backward
compatibility

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

480

8326AppB.qxd 4/18/07 1:24 PM Page 480

Variable Name Preference Location

$prefs['show_comment_count_in_feed'] Advanced—Publish—Show comment
count in feeds?

$prefs['site_slogan'] Basic—Publish—Site slogan

$prefs['sitename'] Basic—Publish—Site name

$prefs['siteurl'] Basic—Publish—Site URL

$prefs['spam_blacklists'] Advanced—Publish—Use e-mail address
to construct feed ids? (Default is site URL)

$prefs['syndicate_body_or_excerpt'] Advanced—Publish—Syndicate article
excerpt? (Default is article body)

$prefs['tempdir'] Advanced—Admin—Temporary directory
path

$prefs['textile_links'] Advanced—link—Textile link descriptions
by default?

$prefs['textile_updated'] Cannot be changed; no known use

$prefs['timeoffset'] Basic—Publish—Time Zone

$prefs['title_no_widow'] Advanced—Publish—Prevent widowed
words in article titles?

$prefs['url_mode'] Basic—Publish—Permanent link mode

$prefs['use_categories'] No longer used; remains for backward
compatibility

$prefs['use_comments'] Basic—Publish—Accept Comments

$prefs['use_dns'] Advanced—Publish—Use DNS?

$prefs['use_mail_on_feeds_id'] Advanced—Publish—Use e-mail address
to construct feed ids? (Default is site URL)

$prefs['use_plugins'] Advanced—Publish—Use plugins?

$prefs['use_sections'] No longer used; remains for backward
compatibility

$prefs['use_textile'] Basic—Publish—Use Textile

$prefs['version'] Set by Textpattern; the current
Textpattern version

PLUGIN DEVELOPER RESOURCES

481

B

8326AppB.qxd 4/18/07 1:24 PM Page 481

$txpcfg

The $txpcfg array contains general settings for the Textpattern installation, as shown in
Table B-2. This array is available on all pages.

Table B-2. General site configuration global variables

Variable Name Description

$txpcfg['db'] The MySQL database used by Textpattern

$txpcfg['dbcharset'] The character set used in the MySQL database

$txpcfg['doc_root'] The web server’s document root

$txpcfg['host'] The database server hostname

$txpcfg['pass'] The password used to connect to the database

$txpcfg['table_prefix'] The table prefix for all Textpattern tables (if applicable)

$txpcfg['txpath'] The full path to the /textpattern directory

$txpcfg['user'] The username used to connect to the database

$pretext

The $pretext array contains values that are set by Textpattern after parsing the URL but
before building pages, as shown in Table B-3. The values in this array can be read or
altered for various purposes, including the capability to support different URL schemes.
Some of the variables in this array are consistent across a site, some change based on the
current page, and some are available only on article listing pages. This array is available on
all pages.

Table B-3. Global variables generated after URL parsing but before pages are built

Variable Name Description

$pretext['author'] The current author when browsing by author

$pretext['c'] The current category when browsing by category

$pretext['id'] The current article’s ID (only on article listings)

$pretext['id_author'] The current article’s author (only on article listings)

$pretext['id_keywords'] The current article’s keywords (only on article
listings)

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

482

8326AppB.qxd 4/18/07 1:24 PM Page 482

Variable Name Description

$pretext['month'] The current month when browsing by month

$pretext['next_id'] The ID of the next article in the listing (only on
article listings)

$pretext['next_posted'] The posted date of the next article in the listing
(only on article listings)

$pretext['next_title'] The title of the next article in the listing (only on
article listings)

$pretext['next_utitle'] The URL title of the next article in the listing (only
on article listings)

$pretext['p'] The current image used by the image_display tag

$pretext['page'] The page template used to build the page

$pretext['path_from_root'] Deprecated

$pretext['path_to_site'] From config.php; the absolute path to the site on
the web server

$pretext['permlink_mode'] The current permanent link mode as set in Admin
ä Preferences

$pretext['pfr'] Deprecated

$pretext['pg'] The current page number when browsing by page

$pretext['prev_id'] The ID of the previous article in the listing (only on
article listings)

$pretext['prev_posted'] The posted date of the previous article in the listing
(only on article listings)

$pretext['prev_title'] The title of the previous article in the listing (only
on article listings)

$pretext['prev_utitle'] The URL title of the previous article in the listing
(only on article listings)

$pretext['q'] The search string when executing a site search

$pretext['qs'] The query string for the page

$pretext['req'] The request URI without the subdirectory path

Continued

PLUGIN DEVELOPER RESOURCES

483

B

8326AppB.qxd 4/18/07 1:24 PM Page 483

Table B-3. Global variables generated after URL parsing but before pages are built (Continued)

Variable Name Description

$pretext['request_uri'] The request URI for the page

$pretext['s'] The current section

$pretext['secondpass'] Indicates whether the Textpattern parser is on its
first or second pass through the page code

$pretext['sitename'] The site name as set in Admin ä Preferences

$pretext['status'] The HTTP page status

$pretext['subpath'] The subdirectory path for the site

$thispage

The $thispage array contains values about the current page, as shown in Table B-4. This
array is available on pages that contain an article listing tag.

Table B-4. Global variables used on article listing pages

Variable Name Description

$thispage [c] The current category when browsing by category

$thispage ['grand_total'] The total number of articles not including the offset

$thispage ['numpages'] The total number of pages

$thispage['pg'] The current page number

$thispage ['s'] The current section

$thispage ['total'] The total number of articles minus the page offset

$thisarticle

The $thisarticle array contains values about the current article, as shown in Table B-5.
This array is available on article forms and is prepopulated when requesting an individual
article page, unless otherwise noted.

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

484

8326AppB.qxd 4/18/07 1:24 PM Page 484

Table B-5. Global variables used on article forms

Variable Name Description Textpattern Tag

$thisarticle When true, commenting <txp:if_comments_allowed />
['annotate'] is open for the article

$thisarticle The image ID assigned <txp:article_image />
['article_image'] to the article

$thisarticle The author of the article <txp:author />
['authorid']

$thisarticle The body of the article <txp:body />
['body']

$thisarticle The article’s first category <txp:category1 />
['category1']

$thisarticle The article’s second <txp:category2 />
['category2'] category

$thisarticle The number of <txp:comments_count />
['comments_count'] comments posted

on the article

$thisarticle The comment invite <txp:comments_invite />
['comments_invite'] text for the article

$thisarticle The article’s excerpt <txp:excerpt />
['excerpt']

$thisarticle Indicates if the current <txp:if_first_article />
['is_first'] article is first in the

article list (populated
only after the article
tag has been used within
the page)

$thisarticle Indicates if the current <txp:if_last_article />
['is_last'] article is last in the article

list (populated only after
the article tag has been
used within the page)

$thisarticle The keywords assigned <txp:keywords />
['keywords'] to the article

Continued

PLUGIN DEVELOPER RESOURCES

485

B

8326AppB.qxd 4/18/07 1:24 PM Page 485

Table B-5. Global variables used on article forms (Continued)

Variable Name Description Textpattern Tag

$thisarticle The override form
['override_form'] assigned to the article

(if applicable)

$thisarticle The date the article <txp:posted />
['posted'] was posted

$thisarticle The article’s section <txp:section />
['section']

$thisarticle The ID number of the <txp:article_id />
['thisid'] article

$thisarticle The title of the article <txp:title />
['title']

$thisarticle The URL title of the
['url_title'] article

$thiscomment

The $thiscomment array contains values about the current comment, as shown in Table B-6.
This array is available on comment forms.

Table B-6. Global variables used on comment forms

Variable Name Description Textpattern Tag

$thiscomment The comment ID <txp:comment_id />
['discussid']

$thiscomment The comment’s email address <txp:comment_email />
['email']

$thiscomment The IP address the comment
['ip'] was posted from

$thiscomment The comment message <txp:comment_message />
['message']

$thiscomment The commenter’s name <txp:comment_name />
['name']

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

486

8326AppB.qxd 4/18/07 1:24 PM Page 486

Variable Name Description Textpattern Tag

$thiscomment The article ID to which
['parentid'] the comment is attached

$thiscomment The date and time the <txp:comment_time />
['posted'] comment was posted

$thiscomment The Unix timestamp <txp:comment_time />
['time'] indicating when the

comment was posted

$thiscomment Indicates whether the
['visible'] comment should be

displayed on the public
site

$thiscomment The commenter’s website <txp:comment_web />
['web'] address

$thislink

The $thislink array contains values about the current link, as shown in Table B-7. This
array is available on link forms.

Table B-7. Global variables used on link forms

Variable Name Description Textpattern Tag

$thislink ['category'] The link category <txp:link_category />
assigned to the link

$thislink ['date'] The date the link was <txp:link_date />
posted

$thislink ['description'] The link description <txp:link_description />

$thislink['linkname'] The link name <txp:link_name />

$thislink ['url'] The link URL <txp:link_url />

PLUGIN DEVELOPER RESOURCES

487

B

8326AppB.qxd 4/18/07 1:24 PM Page 487

$thisfile

The $thisfile array contains values about the current file, as shown in Table B-8. This
array is available on file forms.

Table B-8. Global variables used on file forms

Variable Name Description Textpattern Tag

$thisfile The file category <txp:file_download_category />
['category'] assigned to the file

$thisfile The date the file was <txp:file_download_created />
['created'] originally uploaded

$thisfile The file description <txp:file_download_description />
['description']

$thisfile The number of times <txp:file_download_downloads />
['downloads'] the file has been

downloaded

$thisfile The file name <txp:file_download_name />
['filename']

$thisfile The file ID <txp:file_download_id />
['id']

$thisfile The date the file was <txp:file_download_modified />
['modified'] last uploaded

$thisfile The size of the file <txp:file_download_size />
['size']

Miscellaneous

There are several global variables available besides those in the arrays previously men-
tioned (see Table B-9). The variables are available on all pages.

Table B-9. Miscellaneous global variables

Variable Name Description

$has_article_tag Indicates whether the current page has a valid Textpattern
article tag

$is_article_list Indicates whether the current page is an article listing page

TEXTPATTERN SOLUTIONS: PHP-BASED CONTENT MANAGEMENT MADE EASY

488

8326AppB.qxd 4/18/07 1:24 PM Page 488

Variable Name Description

$plugin_callback An array containing all active plugin callbacks

$plugins An array containing the names of active public-side plugins

$plugins_ver An array containing the version numbers of active public-side
plugins

$txptrace The Textpattern tag trace detailing all tags and queries used
to build the page

$txp_error_code The HTTP error code (if applicable)

$txp_current_tag The Textpattern tag currently being parsed

$qcount The number of database queries used to build the page

$qtime The amount of time (in seconds) taken to build the page

PLUGIN DEVELOPER RESOURCES

489

B

8326AppB.qxd 4/18/07 1:24 PM Page 489

8326Index.qxd 4/24/07 12:54 PM Page 490

INDEX

8326Index.qxd 4/24/07 12:54 PM Page 491

Numbers and symbols
* (asterisk), 100
4.0 branch of source code, 23

A
A List Apart, 5
absolute paths, 102
Accept Comments setting, 74
acronyms, 109
active_class attribute, 462
Admin area

adding tabs to, 307–309
Advanced Preferences tab, 77–85
Diagnostic tab, 68–70
Import tab, 91–93
Languages tab, 85–86
plugins, 89–91
Preferences tab, 70–85
Presentation area, 124–125, 126–127, 129–136,

138–144, 146–148
setting preferences, 364–365
Users tab, 86–87
Visitor Logs, 88

admin-side callback events, 306–307
admin-side plugins, 82, 278
admin-side tab registration, 307–309
Advanced Options link, 110–111
Advanced Preferences tab, 77–85

Admin, 78–79
comments, 79
custom fields, 80
links, 82
publish, 82–85
settings, 365
style, 80

advanced Textile, 97, 103–110
ajw_comments_feed plugin, 332
ajw_if_comment_owner plugin, 310
alignment, 107
Allen, Dean, 4, 97
allowoverride attribute, 130, 394, 397

INDEX

492

anchor attribute, 409
Apache

restarting, 34
SSI capability, 124

$area argument, 308
architecture, Textpattern, 152–159
Archive date format setting, 73
archive pages

adding list of articles, 215–217
adding most recent article, 214–215
creating, 211–217
editing template, 212–217
placing sticky content, 213–214
templates, 124, 318–320

Article categories, 111
article excerpts, 84–85
Article forms, 192, 197–199
Article Image tag, 111, 140, 400
article list, creating, 383–390
Article Navigation tags, 131
article output, section-independent, 202–205
Article Output tags, 128–130
article/excerpt markup, 110
Articles, 166, 170, 173

Body and Excerpt fields, 168–169
comments, 74, 230–242
creating individual, 383–390
customizing URL, 167–168
keywords, 172–173
ordering by custom fields, 273–274
recent, 111
sections and categories, 171, 182
in semantic model, 156
status levels, 169–171
sticky, 129, 170, 213–214, 261
titles, 85, 167–168

Articles (Custom List) tag, 130, 397–399
Articles (Single or List) tag, 128–130, 394–397
Articles Feed Link tag, 133, 419–420
Articles tab, 112–113
Articles tags, 138–140, 394–400
Atom feeds, 16, 85
atom_entry event, 306

8326Index.qxd 4/24/07 12:54 PM Page 492

attributes, 106
active_class, 462
allowoverride, 130, 394, 397
anchor, 409
author, 130, 397
break, 412, 462
breakclass, 462
button, 454
category/categories, 132, 397, 404, 420, 424, 440,

443, 451
class, 106, 400, 402, 404, 421, 435, 462
common, 462–464
CSS class, 132
customfieldname, 395–397
decimals, 426
default, 416
default_title, 458
Display how many?, 129
email, 418
escape, 463
excerpted, 398
exclude, 404, 458
filename, 421, 423
flavor, 420, 440
form, 130, 395, 398, 421, 424, 446, 463
format, 411, 417, 420, 422, 425–426, 438, 440,

450, 455
gmt, 463
Has excerpt, 130
hilight, 456
html_id, 463
id, 130, 398, 412, 414, 416, 421, 424, 428, 430,

435, 448, 460
include_default, 131, 458
isize, 414
item, 460
keywords, 130, 395, 398
label, 132, 401, 420, 440, 463
language, 106, 463
limit, 395, 420, 456, 464
link, 400, 402–403, 409, 457, 464
linkclass, 402
linktext, 418

INDEX

493

listform, 130, 395
login, 447
match, 453
media, 417
month, 130, 398
msg, 462
msgcols, 414
msg_rows, 414
n, 417
name, 403, 417, 427–429, 431, 433–435, 457, 461
no_window, 461
offset, 395, 398, 425
pageby, 395
parent, 132, 404
pass, 447
pgonly, 396
poplink, 461
rel, 417, 437, 442
searchall, 129, 396
searchform, 396
searchsticky, 129, 396
section attribute, 133, 398, 401, 403, 405–406,

420, 449, 451, 453–454, 458
sep, 402
separator, 446
showalways, 415, 441–442, 445
showcount, 415
size, 455
sort, 129, 396, 399, 425, 443, 451–453, 464
status, 128, 396, 399, 435, 462
style, 106
text, 455
textonly, 415
this_section, 401, 403, 406, 449, 464
thumbnail, 400
time, 397–399
title, 402–403, 405–406, 417–418, 420, 438, 440,

457
type attribute, 132, 403, 405, 447, 449
val, 432
ver, 434
wraptag, 132, 402–403, 412, 420, 440, 464

author attribute, 130, 397

8326Index.qxd 4/24/07 12:54 PM Page 493

Author tag, 140, 400–401
Automatically append comments to articles? setting,

76

B
basic Textile, 97–103
bc., 104–105
behavioral layer, 153
Berkeley Software Distribution (BSD) license, 7
binary information, 187
blacklists, 83
block code, 104–105
block quotes, 99
bloggers, 16
blogrolls, 178
blogs, 2. See also multiauthor weblogs
Body field, 168–169
Body tag, 139, 401
BoiseCityEats.com (case study), 360–362. See also

CityEats.com
bq(class), 99
Breadcrumb tag, 134, 401–402
break attribute, 412, 462
breakclass attribute, 462
buffer overflow attacks, 83
bulleted lists, 100
button attribute, 454
BuzzBlog (test site), 158–159

HTML for home page, 183–184
HTML prototype, 193–194

C
cache directory, 79
callback functions, 305–309

admin-side events, 306–307
admin-side tab registration, 307–309
public-side events, 305–306

Cascading Style Sheets (CSS)
creating, outside of Textpattern, 183
editing, 144, 146
linking directly to, 327
RAW CSS area, 146

INDEX

494

style management, 144, 146–148
style preferences, 80

case studies
BoiseCityEats.com. 360–362
CityEats.com, 362–390
Godbit Project, 314–335
PopularWeddingFavors.com, 338–356

categories, 111–112, 162–166
articles, 171
creating, 162–163, 368
image, 173
multiple categories vs. tagging, 164
names vs. titles, 165
nesting, 164–165
in semantic model, 155
vs. sections, 163, 184
in URLs, 165–166

category attribute, 132, 397, 404, 420, 424, 440, 443,
451

Category tags, 139, 402–406
Category List tag, 132–133, 404
character encoding, 79
Christensen, Jared, 17
citations, 101
CityEats.com (case study), 362

adding forms, 377
adding pages, 376
adding plugins, 366–367
adding styles, 372–376
building presentation, 377–390
creating article list and individual articles,

383–390
creating categories, 368
entering content, 368–371
error pages, 378–383
home page, 377–383
on textpatternsolutions.com, 364
preparing presentation, 372–377
preparing TXP for, 364–367
search_results form, 379, 383
search_UI form, 381–382
sections, categories, and content, 367–371
setting advanced preferences, 365
setting site preferences, 364–365

8326Index.qxd 4/24/07 12:54 PM Page 494

#(class), 99
class attribute, 106, 400, 402, 404, 421, 435, 462
??(class)citation??, 101
(class)emphasis, 100
!(class)imageurl(alt text)!:linkurl, 102–103
%(class)span%, 103
(class)strong, 101
Clean URL test failed message, 69
clean URLs, 20–22, 56
code

adding snippets to body text, 103
block, 104–105
See also source code

@code@, 103
comment counts, 84
Comment Details tags, 141–142
Comment E-mail tag, 141, 407
Comment Form tags, 142, 192, 413
Comment Message tag, 142, 408
Comment Name Input tag, 142, 409
Comment Name tag, 141, 408
Comment Permanent Link tag, 141, 409
Comment Preview Button tag, 143, 410
Comment Submit Button tag, 143, 410
Comment Time tag, 142, 411
Comment Website tag, 141, 411
comment.form event, 306
comment.save event, 306
comments, 74

activating, 230–232
adding to pages, 387–390
administration, 239–242
advanced preferences, 79
articles and, 232–239
combating spam, 241–242
disabling, 230–232
expiration of, 231
form, 141, 233–236, 322
moderation of, 240
popularity of, 230
popup_comments, 235
preference settings, 75–76, 236
submission form, 234–235
tags, 141, 407–416

INDEX

495

Comments date format setting, 76
Comments Form tag, 141, 233–236, 322, 413
Comments Invite tag, 140, 415
Comments mode setting, 76
Comments Preview tag, 141, 416
Comments tab, 119–120, 162
Comments tags, 141, 407–416
comments_display form, 323
comments_preview form, 323–324
comment_form, 234–235, 323–324
community, 9, 11–12, 14–15, 17
conditional tags, 199–202, 304

for metadata, 260–261
using on error pages, 251–252

config.php file, 50
contact forms, 219–221, 334–335
content

adding, 368–371
creating, 162–179
dynamic, 189–192, 197–205
layer, 154
modes for viewing, 169
tying together structure and, 208–227

Content area, 96, 155
Articles tab, 112–113, 162, 166–173
Categories tab, 111–112, 162–166
Comments tab, 119–120, 162
Files tab, 115–117, 162, 176–177
Images tab, 113–115, 162, 173, 176
Links tab, 117–118, 178–179
with Staff Writer status, 162
Write tab, 96–111, 162

content management systems (CMSs), 154. See also
Textpattern

Convert linebreaks option, 110
Copy Editor, 87
crockery, 23
CSS. See Cascading Style Sheets
CSS Link (Head) tag, 134, 417–418
custom fields

introduction to, 266
ordering articles by, 273–274
plugins and, 275

8326Index.qxd 4/24/07 12:54 PM Page 495

setting names for, 266–267
setting preferences, 80
setting values in, 267
tags, 268–272, 416–417

customfieldname attribute, 395–397

D
databases

creation, 41–42
setup, 28–30, 48
See also MySQL

Date display setting, 73
Date format setting, 72
date format values, 464–465
debug mode, 290
debugging plugins, 300
decimals attribute, 426
default attribute, 416
default forms, 324–325, 377
Default invite setting, 76
default page templates, 124, 316–317
default pages, removing, 376
default settings, removing, 367–368
default styles, removing, 372–376
default_title attribute, 458
deleted text, 101–102
Designer status, 88, 182
development site, Textpattern, 57, 60
Diagnostics tab, 54–56, 68, 70
Disabled after setting, 76
Disallow user images? setting, 76
Display how many? attribute, 129
DMOZ (DirectoryMOZilla), 83
DOCTYPE, default, 126
doctype form, 325–326
downloads, 23. See also File Downloads tags
Draft status, 169–170
DST enabled setting, 72
dynamic content, 192

creating forms with, 197–205
linking to templates, 189–191

INDEX

496

E
e-mail addresses

for feed ids, 82
hiding, 84
in Atom feeds, 85
user, 79

e-mail attribute, 418
E-mail Link (Spam-Proof) tag, 135, 418
ecommerce sites, reasons to use Textpattern for,

338–356
emphasis, 100
enclosing plugin tags, 303–304
enclosing tags, 295
error pages

creating, 246–252, 378–383
customizing, 249–252
default, 247–248
individual, 250
using conditional tags on, 251–252

error_404 page templates, 321–322
error_default page template, 124
escape attribute, 463
EvalElse() function, 304
$event argument, 305, 308
Excerpt field, 168–169
excerpt form, 329
Excerpt tag, 139, 419
excerpted attribute, 398
excerpts, 84–85
exclude attribute, 404, 458
extensibility, 152
external links, 117

F
FAQs, 9
featured section templates, 317–318
featured_article form, 329–330
featured_gallery form, 330
featured_preview form, 330
feedback, 74
File Categories, 111
File Category tag, 144

8326Index.qxd 4/24/07 12:54 PM Page 496

File Created Time tag, 144
File Description tag, 143
file directory, 79
File Download Count tag, 144
File Download Link tag, 136, 143, 423–424
File Download List tag, 136, 424–425
File Downloads tags, 136, 143–144, 421–426
file extensions, showing, 30
File Forms, 193
File Modified Time tag, 144
File Name tag, 143
file size, limit on uploadable, 78
File Size tag, 144, 426
filename attribute, 421, 423
files

downloadable, 176–177
uploading, 78, 177

Files tab, 115, 117, 162, 176–177
flavor attribute, 420, 440
flexibility, 152
footers, 192
footnotes, 103
form attribute, 130, 395, 398, 421, 424, 446, 463
form overrides, 84
format attribute, 411, 417, 420, 422, 425–426, 438,

440, 450, 455
forms, 182, 191–193, 322, 328

adding new, 377
adding pages, 378–383
article, 138–140, 192, 197–199
comment, 141, 192, 233–236, 322–324
contact, 219–221, 334–335
default, 324–325, 377
doctype, 325–326
with dynamic content, 197–205
excerpt, 329
external CSS, 327
featured_article, 329–330
featured_gallery, 330
featured_preview, 330
file, 193
headlines, 330
helper functions for, 474

INDEX

497

links, 140–141, 193, 331
master_foot, 378
master_head, 378
Misc, 193
opensearch, 327–328
PHP date(), 326–327
search_results, 143, 331
in semantic model, 156
sidebar_left, 331–332
sidebar_right, 332–334
single, 331
with static content, 195–196
zem_contact_form, 334–335
zem_contact_thanks, 335

forms/snippets area, 142–144, 182–183
forums, 10
Freelancer, 88
frequently asked questions (FAQs), 9
FTP files, uploading to host, 48
$func argument, 305
functions,

callback, 305–309
helper, 309, 474–476
safe, 474
See also specific functions

G
global variables, 309, 476–488

$prefs, 476–481
$pretext, 482–484
$thisarticle, 484–486
$thiscomment, 486–487
$thisfile, 488
$thislink, 487
$thispage, 484
$txpcfg, 482
miscellaneous, 488

globally unique identifiers (GUIDs), 103
glx_admin_image, 310
gmt attribute, 463
GNU General Public License (GPL), 7

8326Index.qxd 4/24/07 12:54 PM Page 497

Godbit Project website, 2, 314–315
forms

comments, 322
comments_display, 323
comments_preview, 324
comment_form, 323–324
default, 324–325
doctype, 325–326
excerpt, 329
external CSS, 327
featured_article, 329–330
featured_gallery, 330
featured_preview, 330
headlines, 330
links, 331
opensearch, 327–328
PHP date(), 326–327
search_results, 331
sidebar_left, 331–332
sidebar_right, 332–334
single, 331
zem_contact_form, 334–335
zem_contact_thanks, 335

information architecture hierarchy, 125
pages templates

archive, 318–320
default, 316–317
error_404, 321–322
featured sections, 317–318
search, 320–321
static sections, 315–316

Google Analytics, 328
GUIDs, 103

H
$has_article_tag, 488
Has excerpt attribute, 130
header: hn(class), 98
headlines form, 330
helper functions, 309, 474–476
Hicks, Jon, 17
Hidden status, 170

INDEX

498

hilight attribute, 456
hn(class), 98
home page, metadata for, 261–263
Homepage Link tag, 131, 441
horizontal lines, 98
host

choosing, 22
configuration, 69
uploading FTP files to, 48

hosted environments, setup, 47–48
HOSTS file, 32, 43
.htaccess file, 47
HTML

for Buzzbomb home page, 193–194
creating, outside of Textpattern, 183
helper functions for, 475

HTML 4.01 Strict, 126
HTML templates. See templates
html_id attribute, 463
HTTP status codes, 465–466
Httpd-vhosts.com, updating, 32–33
httpd.conf file, 33, 43
hyperlinks, 102–103

I
id attribute, 106, 130, 398, 412, 414, 416, 421, 424,

428, 430, 435, 448, 460
ied_hide_in_admin plugin, 356
Image Categories, 111
image directory, 78
image gallery forms, 330
images

alternate text for, 174
Article Image tag, 111, 140, 400
plugins for, 224–226
Textile tags, 176
Textpattern tags, 176, 435–436
thumbnail, 175
uploading, 173

Images tab, 113, 115, 162, 173, 176, 222–226
imageurl, 102–103
Import settings, 91–93

8326Index.qxd 4/24/07 12:54 PM Page 498

includes, 124
include_default attribute, 131, 458
incoming links, 82
inserted text, 101–102
installation

benefits of local, 20
checking site diagnostics, 54–55
checking site preferences, 52–53
choosing host, 22
database and site path configuration, 49
downloading official release, 23
hosted environment setup, 47–48
language preferences, 34–36, 49
MAMP, 37–40
on Mac OS X, 36–47
of plugins, 280–282, 366–367
preflight checks, 55–56
process, 48–57
Subversion, 62
system requirements, 20–22
user setup, 51
versions, 22
on Windows, 24–36
XAMPP, 24–27

IP addresses, conversion of, 82
$is_article_list, 488
isize attribute, 414
ISO-8859–1 encoding, 79
italics, 100
item attribute, 460

J
Joyent, 5

K
Kennedy, Ted, 5
keywords, 259

article, 172–173
attribute, 130, 395, 398
option, 110

kgr_safe_excerpt plugin, 329
knowledge portability, 157

INDEX

499

L
label attribute, 132, 401, 420, 440, 463
labeltag attribute, 132, 463
LAMP platform, 6–7
language attribute, 106, 463
language preferences, 85–86
Language tag, 135, 437
lAtts() function, 295
Leave text untouched option, 110
licensing, 7
limit attribute, 395, 420, 456, 464
link attribute, 400, 402–403, 409, 457, 464
Link Categories, 111
Link Category tag, 141, 438
Link Date tag, 141, 438
Link Description tag, 140, 439
Link Forms, 193, 331
Link Name tag, 140, 440
Link tags, 140–141, 437–444
Link to specific section attribute, 133
link, title=Description tag, 140, 442
linkclass attribute, 402
Links Feed Link tag, 134, 439–440
links, incoming, 82
Links List tag, 135, 443–444
Links setting, 81–82
Links tab, 81–82, 117–118, 162, 178–179
linktext attribute, 418
linkurl attribute, 102–103
List break tag attribute, 132
listform attribute, 130, 395
lists

article, 215–217, 383–390
bulleted, 100
numeric, 99
unordered, 100

Live status, 169–170
load_plugins() function, 291
logging in, 68
Logging setting, 74
login attribute, 447
logs

expiration, 84
visitor, 82, 88

8326Index.qxd 4/24/07 12:54 PM Page 499

M
Mac OS X

local development on, 36–47
installing MAMP, 37–40
MySQL database creation, 41–42

Subversion on, 62–64
Mail comments to author? setting, 76
MAMP, installing, 37–40
Managing Editor, 87
master_foot form, 378
master_head form, 378
match attribute, 453
media attribute, 417
messy URLs, for testing, 56
metadata, 152

conditional tags for, 260–261
customizing, 256–263
dynamic, 258–261
for home page, 261–263
moving static, 258
for section landing pages, 261
for sticky articles, 261

Misc forms, 193
Miscellaneous tags, 134–136
Moderate comments? setting, 75
mod_rewrite module, 20–22, 33, 69
month attribute, 130, 398
msg attribute, 462
msgcols attribute, 414
msg_rows attribute, 414
multiauthor weblogs, 314

forms, 322–335
comments, 322
comments_display, 323
comments_preview, 324
comment_form, 323–324
default, 324–325
doctype, 325–326
excerpt, 329
external CSS, 327
featured_article, 329–330
featured_gallery, 330
featured_preview, 330

INDEX

500

headlines, 330
links, 331
opensearch, 327–328
PHP date(), 326–327
search_results, 331
sidebar_left, 331–332
sidebar_right, 332–334
single, 331
zem_contact_form, 334–335
zem_contact_thanks, 335

pages templates, 315–322
archive, 318–320
default, 316–317
error_404, 321–322
featured sections, 317–318
search, 320–321
static sections, 315–316

MySQL, 6
database creation, 41–42
plugins and knowledge of, 288
setup, 28, 30, 48

N
n attribute, 417
name attribute, 403, 417, 427–429, 431, 433–435,

457, 461
names, category, 165
navigation tags, 131, 404, 441, 449–459
nesting, category, 164–165
Newer Articles Link tag, 131, 444
Next Article Link tag, 131, 445
Next Article Title tag, 131, 445
notextile attribute, 98
no_window attribute, 461
number attribute, 427
numeric lists, 99

O
offset attribute, 395, 398, 425
Older Articles Link tag, 131, 445
On by default? setting, 75
online resources, 11–16

8326Index.qxd 4/24/07 12:54 PM Page 500

OpenSearch, 327–328
opensearch_desc.xml, 327–328
Output Form tag, 135, 446

P
p(class)., 104
Page by option, 129
Page Title tag, 134, 446–447
page-specific content, 192
pageby attribute, 395
pages, 127, 182–183

adding new, 376
archive, 211–217
contact, 218–221
creating home page, 377–383
creating templates with, 188–205
defined, 124, 182
error, 124, 246–252, 321–322, 378–383
keywords, 259
linking to section, 187
multiple templates within, 199–202
page description, 259
in semantic model, 156
static, 208–211
titles, 134, 259, 446–447

pages templates
archive, 318–320
creating, 126, 188–205
default, 124, 316–317
deleting, 136
editing, 136
error_404, 321–322
featured sections, 317–318
multiple, 199–202
search, 320–321
static sections, 315–316

pap_contact_cleaner plugin, 356
paragraphs, 104
parent attribute, 132, 404
parse errors, in plugins, 299–300
pass attribute, 447
Password Protection tag, 135, 447

INDEX

501

Pending status, 169–170
Permalinks, attaching titles to, 84
Permanent link mode, 73–74
Permanent Link tag, 138–139, 448
pgonly attribute, 129, 396
photo gallery, creating, 222–226

adding introductory copy, 223–224
plugins for, 224–226
section and page, 223

PHP, 6, 83, 124, 169
for contact forms, 220
resources for learning, 288

PHP fate() form, 326–327
phpMyAdmin page, 28, 30, 41–42
ping-o-matic.com, 84
plain text, 168
Plugin cache directory, 290
plugin event, 307
plugins, 84

activating, 282
admin-side, 82, 278
ajw_if_comment_owner, 310
ajw_comments_feed, 332
attributes, 295–296
basics needed, to write, 288
cache directory path, 79
callback functions, 305–309
calling, with attributes, 298
calling, with incorrect attributes, 298–299
compiling and releasing, 300–302
conditional tags, 304
for contact forms, 220–221
custom fields and, 275
debugging, 300
errors, 299–300
global variables, 309, 476, 479–488
glx_admin_image, 310
help documentation, 283
helper functions, 309, 474–476
for images, 224–226
installing, 280–282, 366–367
loading, 291
naming, 293

8326Index.qxd 4/24/07 12:54 PM Page 501

newly installed, 302
output, 296
overview, 278
public-side vs. admin-side, 278
resources for, 279
settings, 89–91
as tags, 295
template, 289, 292–293
testing, 296–299
uninstalling, 285
viewing and editing code of, 283–284
viewing help, 302
writing, 288–300

basic, 293–296
configuring Textpattern for, 289–291
enclosing, 303–304
self-closing, 295–302
workspace setup, 289

See also specific plugins
$plugin_callback array, 489
$plugins array, 489
Plugins tab, 285
$plugins_ver array, 489
poplink attribute, 461
PopularWeddingFavors.com (case study), 338–356

cart and checkout pages, 352–353
catalog pages, 346–351
error pages, 354
home page, 342–345
order confirmation page, 353
page structure, 341–345
plugins, 355–356
site structure, 341
static pages, 346

Popup List tag, 133, 449
popup_comments form, 235
Posted tag, 139, 450
$pre argument, 305
pre(class)., 105–106
<pre> tag, 104–105
Preferences tab, 70–85

Advanced Preferences, 77–85
Comment preferences, 236

INDEX

502

Language, 85–86
Publish, 71–75

preflight checks, 55–56
preformatted text, 105–106
$prefs array, 476–481
Present comments as a numbered list? setting, 75
Presentation, 153–155

access to, 182
building with pages and forms, 377–390
overview, 124–125
Pages tab, 126–136
preparing the site, 372–377
Sections tab, 136–144
separating from content, 8

$pretext array, 482–484
pretext event, 306
Previous Article Link tag, 131, 442
Previous Article Title tag, 131, 450
Production Status setting, 75
prototypes, 362
pseudocode, conversion to XHTML, 74
public-side callback events, 305–306
public-side plugins, 278
Publish setting, 81–85
Publish tab, 71–75
Publisher, 87
PvP Online, 4

Q
$qcount, 489
quotation marks, 105
$qtime, 489

R
ransoming a plugin, 17
RAW CSS area, 146
raw XHTML, 109–110
reader comments. See comments
Recent Articles tag, 133, 450–451
Recent Comments tag, 133, 452
referral logs, 88–89
register_tab() function, 308

8326Index.qxd 4/24/07 12:54 PM Page 502

rel attribute, 417, 437, 442
rel="nofollow", 82
Related Articles tag, 133, 453–454
relative paths, 102
Remember Details Checkbox tag, 143
resources, 9–16
Rich Site Summary (RSS), 16
rss_admin_db_manager plugin, 310, 355, 368
rss_admin_quickpik plugin, 355
rss_admin_show_adv_opts plugin, 275, 355
rss_article_edit plugin, 356
rss_auto_excerpt plugin, 310
rss_entry event plugin, 306
rss_if_no_search_results plugin, 383
rss_if_search_results plugin, 343, 355
rss_thumbpop plugin, 224–226, 310
rss_unlimited_categories plugin, 309, 347, 355, 368,

382–384

S
safe functions, 474
search boxes, adding, 253
Search Engine Optimization (SEO), 110
search functionality, adding, 252–253
Search Input Form tag, 133, 454–455
search page templates, 320–321
Search Result Date tag, 143, 455
Search Result Excerpt tag, 143, 456
Search Result Title tag, 143, 456
Search Result URL tag, 143, 456
search results, customizing, 253–256
searchall attribute, 129, 396
searchform attribute, 396
searchsticky attribute, 129, 396
search_results form, 331, 379, 383
search_UI form, 381–382
section attribute, 132, 398, 401, 403, 405–406, 420,

449, 451, 453–454, 458
section landing pages, 261
Section List tag, 131–132, 457–459
Section tag, 139, 457
section-independent article output, 202–205

INDEX

503

sections, 124, 182–183
articles, 171
vs. categories, 163, 184
creating, 184–188
Forms area, 137–144
linking pages to, 187
names and titles, 187
options, 187–188
in semantic model, 156
site architecture considerations and, 184–185

security issues, 69
sed_pcf plugin, 275, 356
See foo[1], 103
self-closing tags, 126, 295–302
semantic structure, 152–153
semantic Web, 152–159
sep attribute, 402
separator attribute, 446
server configuration, preferences, 78–79
setup directory, deleting, 69
Sheils, Alex, 97
showalways attribute, 415, 441–442, 445
showcount attribute, 415
sidebar_left form, 331–332
sidebar_right form, 332–334
single form, 331
site administration

import settings, 91–93
logging in, 68
plugins, 89–91
pre-flight check, 68–70
setting preferences, 70–85

advanced, 77–85
comments, 75–76
language, 85–86
publish options, 71–75

Users tab, 86–88
visitor logs, 88

site architecture considerations, 184–185
site diagnostics, checking, 54–55
Site Name tag, 71, 134, 459
Site Navigation tags, 131–133, 404, 441, 449–459

8326Index.qxd 4/24/07 12:54 PM Page 503

site preferences
checking, 52–53
global variables, 476–481
setting, 364–365

Site Slogan tag, 72, 134, 459
site updates, 85
Site URL tag, 71, 459
size attribute, 455
Skip option, 129
Smith, Matthew, 17
sort attribute, 129, 396, 399, 425, 443, 451–453, 464
source code

browsing Textpattern, 58
pulling from Subversion, 60–62
resources for learning about, 288
static, 192

spam blacklists, 83
spammers, 82
spans, 103
SQL, plugins and knowledge of, 288
SSI (Server Side Includes), 124
Staff Writer status, 87, 162
standards-based Web, 152
static code, 192
static content, creating forms with, 195–196
static pages

building, 208–211
templates, 210–211, 315–316

status attribute, 396, 399, 435, 462
status levels, of articles, 169–171
$step argument, 305
sticky articles, 129, 170, 213–214, 261
straight quotes, 105
strong, 101
structural layer, 153

separation of content from, 154
tying together content and, 208–227

style attribute, 106
style management, 144, 146–148
style preferences, 80
Style tab, 182
styles, adding new, 372–376

INDEX

504

subscript, 102
Subversion, 22

installation, 62
on OS X, 62–64
pulling code from, 60–62
with Windows, 60–61

superscript, 102
svnX, 62–63
syndication options, 85
system requirements, 20–22

T
tables

Textile, 107–109
XHTML, 107–108

tabs, adding to admin interface, 307–309
tag attributes. See attributes
Tag Builder, 127, 129, 132–136
tag entry template, 394
tagging, vs. multiple categories, 164
tags

conditional, 199–202, 251–252, 260–261, 304
custom field, 268–272
enclosing, 295
self-closing, 126, 295–302
semantics and, 152–153
Textile, 176
XHTML, 176
See also Textpattern tags; specific tags

Tags tab, 175
templates

archive page, 124, 318–320
creating with pages, 188–205
default page, 124, 316–317
featured section, 317–318
linking to dynamic content, 189–191
multiple, within single page, 199–202
plugin, 289–293
steps in creating, 183
See also pages templates

Temporary directory, 78

8326Index.qxd 4/24/07 12:54 PM Page 504

text
alignment, 107
deleted, 101–102
formatting, 74
inserted, 101–102
preformatted, 105–106

text attribute, 455
Text to use for default section link option, 131
TextBook International, 12
TextDrive, 5
Textgarden, 14
Textile, 74, 82

acronyms, 109
advanced, 97, 103–110
alignment, 107
attributes, 106
basic, 97–103
footnotes, 103
raw XHTML, 109–110
subscript, 102
tables, 107–109
tags, 176

Textile Help, 97–110
textonly attribute, 415
<text:output_form />, 195
Textpattern (TXP)

acquisition of, 23
architectural model, 152–159
configuring, for writing plugins, 289–291
default installation, 3, 124–125
for ecommerce sites, 338–356
downloading official release, 23
FAQs, 9
history of, 4–6
installation

choosing host, 22
hosted environment setup, 47–48
on Mac OS X, 36–47
process, 48–57
on Windows, 24–36

introduction to, 2–4
licensing, 7
semantic model, 154–157

INDEX

505

system requirements, 20–22
versions, 22
workings of, 6–8

Textpattern community, 9–17
Textpattern development site, 57–60
Textpattern event, 306
Textpattern forum, 10, 288
Textpattern Pro version, 6
Textpattern Resources, 11, 288
Textpattern tags, 157, 176

<txp:article />, 128, 201, 198–199, 236–239, 345,
394–397

<txp:article_custom />, 130, 202–205, 263,
397–399

<txp:article_id />, 399
<txp:article_image />, 111, 140, 400
<txp:author>, 140, 400–401
<txp:body />, 139, 201, 401
<txp:breadcrumb />, 134, 401–402
<txp:category />, 201, 402–403
<txp:category1 />, 139, 405–406
<txp:category2 />,139, 406
<txp:category_list />, 132, 404
<txp:comments />, 412
<txp:comments_count />, 413
<txp:comments_error />, 413
<txp:comments_form />, 141, 192, 233–236, 322,

413
<txp:comments_help />, 414
<txp:comments_invite />, 140, 415
<txp:comments_preview />, 416
<txp:comment_anchor />, 407
<txp:comment_email />, 407
<txp:comment_email_input />, 407
<txp:comment_id />, 408
<txp:comment_message />, 142, 233, 408
<txp:comment_message_input />, 408
<txp:comment_name />, 141, 408
<txp:comment_name_input />, 142, 409
<txp:comment_permlink />, 141, 409
<txp:comment_preview />, 143, 410
<txp:comment_remember />, 410
<txp:comment_submit />, 143, 410

8326Index.qxd 4/24/07 12:54 PM Page 505

<txp:comment_time />, 142, 411
<txp:comment_web />, 141, 411
<txp:comment_web_input />, 411
<txp:css />, 134, 379, 417–418
<txp:custom_field />, 268–272, 416–417
<txp:else />, 418
<txp:email />, 418
<txp:error_message />, 419
<txp:error_status />, 419
<txp:excerpt />, 139, 198, 419
<txp:feed_link />, 133, 419–420
<txp:file_download />, 136, 421
<txp:file_download_category />, 421
<txp:file_download_created />, 422
<txp:file_download_description />, 422
<txp:file_download_downloads />, 423
<txp:file_download_id />, 423
<txp:file_download_link />, 136, 143, 423–424
<txp:file_download_list />, 136, 424–425
<txp:file_download_modified />, 425
<txp:file_download_name />, 426
<txp:file_download_size />, 144, 426
<txp:if_article_author>, 426
<txp:if_article_category>, 427
<txp:if_article_id>, 427
<txp:if_article_list>, 428
<txp:if_article_section>, 428
<txp:if_author>, 429
<txp:if_category>, 347, 429
<txp:if_comments>, 429
<txp:if_comments_allowed>, 430
<txp:if_comments_disallowed>, 430
<txp:if_comments_error>, 431
<txp:if_comments_preview>, 431
<txp:if_custom_field>, 270–272, 431–432
<txp:if_different>, 432
<txp:if_excerpt>, 432
<txp:if_first_article>, 432
<txp:if_individual_article>, 201–202, 433
<txp:if_last_article>, 433
<txp:if_plugin>, 433
<txp:if_search>, 343, 383, 434
<txp:if_section>, 263, 434

INDEX

506

<txp:if_status>, 251–252, 434
<txp:image>, 435–436
<txp:image_display>, 436
<txp:image_index>, 436
<txp:keywords />, 437
<txp:lang />, 135, 437
<txp:link />, 140, 437
<txp:linkdesctitle>, 140, 442
<txp:linklist />, 135, 443–444
<txp:link_category />, 141, 438
<txp:link_date />, 141, 438
<txp:link_description />, 148, 439
<txp:link_feed_link />, 140, 439–440
<txp:link_name />, 140, 440
<txp:link_to_home>, 131, 380, 441
<txp:link_to_next>, 441
<txp:link_to_prev>, 131, 442
<txp:link_url />, 442
<txp:message > tag, 233
<txp:meta_author />, 444
<txp:meta_keywords />, 444
<txp:newer>, 131, 444
<txp:next_title />, 148, 445
<txp:older>, 131, 445
<txp:output_form />, 135, 446
<txp:page_title />, 134, 259, 446–447
<txp:page_url />, 447
<txp:password_protect />, 135, 447
<txp:permalink>, 138–139, 198, 329, 448
<txp:php>, 448
<txp:popup />, 133, 449
<txp:posted />, 139, 450
<txp:prev_title />, 131, 450
<txp:recent_articles />, 133, 450–451
<txp:recent_comments />, 133, 452
<txp:related_articles />, 133, 453–454
<txp:rss_unlimited_categories_article_list />,

384–385
<txp:search_input />, 133, 253, 382, 454–455
<txp:search_result_count />, 143, 455
<txp:search_result_date />, 143, 455
<txp:search_result_excerpt />, 143, 456
<txp:search_result_title />, 143, 456

8326Index.qxd 4/24/07 12:54 PM Page 506

<txp:search_result_url />, 143, 456
<txp:section />, 132, 187, 457
<txp:section_list />, 131–132, 457, 459
<txp:sitename />, 134, 459
<txp:site_slogan />, 72, 134, 459
<txp:site_url />, 71, 459
<txp:text />, 460
<txp:thumbnail />, 460–461
<txp:title />, 139, 198, 461
<txp:txp_die />, 461

textpattern.com, pinging, 83
Textplates, 15
$thing variable, 303
$thisarticle array, 484, 486
$thiscomment array, 486–487
$thisfile array, 488
$thislink array, 487
$thispage array, 484
this_section attribute, 401, 403, 406, 449, 464
$title argument, 308
three-dimensional model, 153
thumbnail attribute, 400
thumbnail images, 175
time attribute, 128, 397, 399
Time Zone setting, 72–73
title attribute, 402–403, 405–406, 417–418, 420, 438,

440, 457
Title tag, 139, 461
titles

article, 167–168
attaching to permalinks, 84
category, 165

Trac, 57
TravelWithYourKids, 230
TXP Magazine, 12–14
$txpcfg array, 482
$txp_current_tag, 489
$txp_error_code, 489
$txptrace, 489
txplib_db.php, 474
txplib_forms.php, 474
txplib_html.php, 475
txplib_misc.php, 475

INDEX

507

type attribute, 132, 403, 405, 447, 449
Unicode Transformation Format (UTF), 79
unordered lists, 100

U
URL-only title option, 111
URLs

categories in, 165–166
clean, 20–22, 56
customizing articles, 167–168
maximum length, 83
messy, for testing, 56

Use Textile setting, 74, 110
user e-mail addresses, 79, 84
user feedback, 74. See also comments
user names, 79
user permissions, 315
user privileges, 87–88
user setup, 51
Users tab, 86–88
UX Magazine, 2–3

V
val attribute, 432
variables. See global variables
ver attribute, 434
viral marketing, 17
visitor logs, 82, 88

W
web host. See host
Web Standards, 8, 152, 314

semantics and, 152–159
XML, 157

Web Standards Project, 314
weblogs, 2. See also multiauthor weblogs
websites

adding search functionality to, 252–253
customizing search results, 253–256
links to external, 117

8326Index.qxd 4/24/07 12:54 PM Page 507

Windows
local development on, 24–36

initial preparations, 30–34
installing XAMPP, 24–27
MySQL setup, 28–30
using XAMPP, 27–28

using Subversion with, 60–61
wraptag attribute, 132, 402–403, 412, 420, 440, 464
Write tab, 96–111, 162

Advanced Options, 110–111
Recent Articles, 111
Textile Help, 97–110

X
XAMPP

installing, 24–27
using, 27–28

XHTML
headers, 98
raw, 98, 109–110
tables, 107–108
tags, 176

XHTML 1.0 Strict, 126
XHTML 1.0 Transitional, 126
XHTML 1.1, 126
XML, 157
XML Feeds tags, 133–134

INDEX

508

Y
Yahoo!, 6

Z
zem_contact plugin, 220–221
zem_contact_form form, 334–335
zem_contact_lang plugin, 334
zem_contact_reborn admin, 356
zem_contact_reborn plugin, 220–221, 310, 334
zem_contact_thanks form, 335
zem_plugin.php file, 289, 292–293
zem_plugin_example.php, 289
zem_tpl.php, 289

8326Index.qxd 4/24/07 12:54 PM Page 508

